亚洲日本精品宅男,在线激情小视频第一页,精品国产美女福到在线不卡,自在自线亚洲а∨天堂在线

      當(dāng)前位置:好文網(wǎng)>實(shí)用文>教學(xué)反思>《簡(jiǎn)易方程》教學(xué)反思

      《簡(jiǎn)易方程》教學(xué)反思

      時(shí)間:2023-03-11 10:26:27 教學(xué)反思 我要投稿
      • 相關(guān)推薦

      《簡(jiǎn)易方程》教學(xué)反思

        身為一位優(yōu)秀的老師,我們都希望有一流的課堂教學(xué)能力,寫教學(xué)反思可以很好的把我們的教學(xué)記錄下來(lái),來(lái)參考自己需要的教學(xué)反思吧!以下是小編為大家整理的《簡(jiǎn)易方程》教學(xué)反思,僅供參考,歡迎大家閱讀。

      《簡(jiǎn)易方程》教學(xué)反思

      《簡(jiǎn)易方程》教學(xué)反思1

        在教現(xiàn)行人教版九年制義務(wù)教育小學(xué)數(shù)學(xué)第九冊(cè)《簡(jiǎn)易方程》時(shí),發(fā)現(xiàn)現(xiàn)行教材與以往版本不同:

        以往的教法是利用“兩個(gè)加數(shù)相加,求一個(gè)加數(shù)就用和減去另一個(gè)加數(shù),即:加數(shù)=和-加數(shù);兩個(gè)因數(shù)相乘,求一個(gè)因數(shù)就用積除以另一個(gè)因數(shù),即:因數(shù)=積÷因數(shù)”;

        現(xiàn)行的教法和初中類似,即:解方程時(shí)利用方程兩邊同時(shí)加上或減去一個(gè)數(shù)或同時(shí)乘以或除以一個(gè)不為零的數(shù)方程兩邊的值不變,但具體解題中與初中不同的是不提移項(xiàng)與合并同類項(xiàng),思想方法卻是相同的'。

        在教學(xué)中發(fā)現(xiàn)小學(xué)生對(duì)這種方法掌握較困難,主要表現(xiàn)在:

        第一,用字母表示數(shù)不好接受,不易理解,也不習(xí)慣;

        第二,用代數(shù)式表示一個(gè)得數(shù)或結(jié)果不理解;

        第三,字母與數(shù),字母與字母之間的簡(jiǎn)單運(yùn)算不理解,例如:a2=a×a,2a=a+a,用x-5表示一個(gè)數(shù)。

        我們知道算式思維與方程思維是兩種不同的思考方法,在一些復(fù)雜的問(wèn)題中用算式很難解出,用方程卻簡(jiǎn)單的多,現(xiàn)行小學(xué)教材中有提升方程教學(xué)的意思,旨在培養(yǎng)學(xué)生的思考能力,便于與初中銜接。

        教學(xué)實(shí)踐中我們發(fā)現(xiàn)通過(guò)練習(xí)學(xué)生還是可以掌握的很好的。

      《簡(jiǎn)易方程》教學(xué)反思2

        本節(jié)課的教學(xué)重點(diǎn)和難點(diǎn)是:理解“方程的解”、“解方程”兩個(gè)概念;會(huì)運(yùn)用天平平衡的道理解簡(jiǎn)單的方程。在教學(xué)環(huán)節(jié)的設(shè)計(jì)和安排上,盡量為突破教學(xué)重點(diǎn)和難點(diǎn)服務(wù),因此我進(jìn)行了大膽的嘗試,在講解方程的解時(shí),給學(xué)生一個(gè)明確的目的,告訴他們:“解方程就是為了求出“方程的解”而“方程的解”是一個(gè)神奇的數(shù),由此引起了學(xué)生的好奇心,通過(guò)練習(xí)讓學(xué)生充分感知“方程的解”的神奇之處。

        1.本課主要對(duì)解方程進(jìn)行了解題練習(xí)。通過(guò)搶奪小紅花等游戲的形式大大提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的樂(lè)趣和興趣!

        2、通過(guò)本課的作業(yè)檢測(cè),有少量學(xué)生還是對(duì)本課的內(nèi)容練習(xí)不是很到位。需要教師在課下不斷的指導(dǎo)。

        3、學(xué)生對(duì)于方程的書(shū)寫格式掌握的很好,這一點(diǎn)很讓人欣喜.

        人教版五年級(jí)數(shù)學(xué)上冊(cè)《解方程》教學(xué)反思

        解方程是數(shù)學(xué)領(lǐng)域里一個(gè)關(guān)鍵的知識(shí),在實(shí)際中,擁有方程的解法之后,很多人不會(huì)算式解題,但是能用方程解題,足以見(jiàn)得方程可以做到一些算式無(wú)法超越的能力。

        而如今五年級(jí)的.學(xué)生開(kāi)始學(xué)習(xí)解方程,作為教師的我更應(yīng)該讓學(xué)生吃透這方程,突破這重難點(diǎn)。在教這單元之前,我一直困惑解方程要采用初中的“移項(xiàng)解題,還是運(yùn)用書(shū)本的“等式性質(zhì)解題,面對(duì)困惑,向老教師請(qǐng)教,原來(lái)還有第三種老教材的“四則運(yùn)算之間的關(guān)系解題,方法多了,學(xué)生該吸收那種方法呢?困惑,學(xué)生該如何下手,運(yùn)用“移項(xiàng)解題,學(xué)生對(duì)于這個(gè)概念或許不會(huì)系統(tǒng)清晰,但是“等式性質(zhì)解題時(shí),在碰到a-x=b和a÷x=b此類的方程,學(xué)生能如何下手,“四則運(yùn)算之間的關(guān)系老教材的方式改變,必有他的理由,能用嗎?

        困惑!我先了解改革的原因(摘自教學(xué)參考書(shū)):新教材編寫者如此說(shuō)明:長(zhǎng)期以來(lái),小學(xué)教學(xué)簡(jiǎn)易方程時(shí),方程變形的依據(jù)總是加減運(yùn)算的關(guān)系或乘除運(yùn)算之間的關(guān)系,這實(shí)際上是用算術(shù)的思路求未知數(shù)。到了中學(xué)又要另起爐灶,引入等式的基本性質(zhì)或方程的同解原理來(lái)教學(xué)解方程。小學(xué)的思路及其算法掌握得越牢固,對(duì)中學(xué)代數(shù)起步教學(xué)的負(fù)遷移就越明顯。因此,現(xiàn)在根據(jù)《標(biāo)準(zhǔn)》的要求,從小學(xué)起就引入等式的基本性質(zhì),并以此為基礎(chǔ)導(dǎo)出解方程的方法。這就較為徹底地避免了同一內(nèi)容兩種思路、兩種算理解釋的現(xiàn)象,有利于加強(qiáng)中小學(xué)數(shù)學(xué)教學(xué)的銜接。從這不難看出,為了和中學(xué)教學(xué)解方程的方法保持一致,是此次改革的主要原因。但是從另一方面看出老教材的方法并無(wú)錯(cuò)誤,而且能讓學(xué)生清楚準(zhǔn)確地掌握實(shí)際解題,面對(duì)題目不會(huì)盲目,而采用等式基本性質(zhì)給學(xué)生帶來(lái)的是局部的銜接,而存在局部對(duì)學(xué)生會(huì)更困難,如a-x=b和a÷x=b此類的方程。

      《簡(jiǎn)易方程》教學(xué)反思3

        開(kāi)學(xué)兩周了,經(jīng)過(guò)開(kāi)學(xué)后的適應(yīng),教學(xué)工作已經(jīng)逐步進(jìn)入了正常軌道。其實(shí)說(shuō)是適應(yīng),只是我的適應(yīng),孩子們并沒(méi)有表現(xiàn)出所謂的"開(kāi)學(xué)綜合征",開(kāi)學(xué)近兩周他們都表現(xiàn)得很棒!本來(lái)剛開(kāi)學(xué),擔(dān)心孩子們收不回心來(lái),一直布置很少的一點(diǎn)家庭作業(yè),甚至有時(shí)候只是布置預(yù)習(xí)而已。當(dāng)然,這樣做也許也確實(shí)讓孩子們能逐漸進(jìn)入學(xué)習(xí)狀態(tài),避免出現(xiàn)開(kāi)學(xué)倦怠或反感情緒。

        在知識(shí)方面,原來(lái)?yè)?dān)心孩子們對(duì)方程會(huì)有不適應(yīng)或抵制情緒,結(jié)果孩子們都表現(xiàn)不錯(cuò)。方程解法的繁瑣并沒(méi)有讓孩子們感到厭倦,因?yàn)殡m說(shuō)解方程書(shū)寫步驟較多,但規(guī)律明顯,順向思維不需要過(guò)多的思維過(guò)程,抓住關(guān)鍵詞列方程就迎刃而解了。最近主要的問(wèn)題是形如12-X=5或56÷X=14這樣的方程,用等式的性質(zhì)來(lái)解很別扭,而用傳統(tǒng)的方法又怕孩子混淆。其實(shí)這個(gè)問(wèn)題教材在設(shè)計(jì)時(shí)早有考慮,原則上這種類型的方程不做要求,因此課本上并沒(méi)有出現(xiàn)這樣的題目。但孩子們?cè)诮鉀Q問(wèn)題時(shí)自己會(huì)列出這樣的方程,只好臨時(shí)先提醒孩子盡量避免列出X在減數(shù)或除數(shù)位置上的'方程。這樣做的目的并不是要刻意回避這種問(wèn)題,而是考慮到孩子們對(duì)現(xiàn)在的方法還不夠熟練,不宜教給他們另外一種全然不同的解法,這個(gè)問(wèn)題且等孩子們熟練掌握了解方程的方法后再說(shuō)吧!反正教材是不要求做這種題的。

        還有個(gè)問(wèn)題就是在解決問(wèn)題時(shí),算術(shù)方法與列方程的選擇。最近一直在學(xué)習(xí)列方程解應(yīng)用題,所以孩子們想當(dāng)然地每道題都列方程解答。教材上雖然有一道題目是指導(dǎo)孩子體驗(yàn)理解用算術(shù)方法與方程方法解決問(wèn)題的區(qū)別,能直接套用公式或順向思維列式的就直接用算術(shù)方法解決比較簡(jiǎn)捷,用逆向思維考慮的問(wèn)題可以用方程解決比較簡(jiǎn)捷?赡苁怯捎诔鯇W(xué),或者因?yàn)闆](méi)有養(yǎng)成認(rèn)真分析數(shù)量關(guān)系的習(xí)慣,孩子們?cè)谶@方面還比較困惑,需要在以后的教學(xué)中指導(dǎo)孩子們逐步理解和掌握。慢慢來(lái),不要急。

      《簡(jiǎn)易方程》教學(xué)反思4

        人教版五年級(jí)上冊(cè)《解簡(jiǎn)易方程》這個(gè)單元中,教材是通過(guò)等式的基本性質(zhì)來(lái)解方程,這個(gè)方法雖然說(shuō)使得小學(xué)的知識(shí)與初中的知識(shí)更加的接軌,讓方程的解法更加的簡(jiǎn)單。從教材的編排上,整體難度下降,對(duì)學(xué)生以后的發(fā)展是有利的。但是教材中故意避開(kāi)了減數(shù)和除數(shù)為未知數(shù)的方程,如:a-x=b或a÷x=b,要求學(xué)生根據(jù)實(shí)際問(wèn)題的數(shù)量關(guān)系,列成如x+b=a或bx=a的方程。這樣的處理方法,有時(shí)也會(huì)無(wú)法避免地直接和方程思想發(fā)生矛盾。例如“爸爸比小明大28歲,小明Х歲,爸爸40歲!焙芏鄬W(xué)生列出了這樣的方程:40-Х=28,方程列的是沒(méi)有任何問(wèn)題的,但是應(yīng)該怎么解呢?允不允許學(xué)生用四則運(yùn)算各部分的關(guān)系來(lái)解方程?是否該向?qū)W生講解方法?還是讓學(xué)生把此方程改成教材要求的那樣的方程?如果要改成教材要求的方程,那就是在向?qū)W生傳達(dá)這樣的思想:這樣的列法是不被認(rèn)可的,那么以后在學(xué)習(xí)“未知數(shù)是減數(shù)和除數(shù)的方程”時(shí),學(xué)生的思維不就又和現(xiàn)在沖突了嗎?現(xiàn)在學(xué)習(xí)的節(jié)方程中,學(xué)生很容易看見(jiàn)加法就減,看見(jiàn)減法就加,看見(jiàn)乘法就除,看見(jiàn)除法就乘,如把30÷Ⅹ=15的解法教給學(xué)生,能熟練掌握并運(yùn)用的學(xué)生很少,對(duì)大部分學(xué)生來(lái)說(shuō)越教越是糊涂,把本來(lái)剛建構(gòu)的解方程方法打破了。如果不安排,那么每次在出現(xiàn)的時(shí)故意回避嗎?

        在教學(xué)列方程解加減乘除解決問(wèn)題第一課時(shí),我是這樣處理的。先出示做一做的題目,這題更接近學(xué)生的實(shí)際,學(xué)生也能更好理解數(shù)量關(guān)系。小明今年身高152厘米,比去年長(zhǎng)高了8厘米。小明去年身高多少?先讓學(xué)生讀題理解題目中有哪幾個(gè)量?引導(dǎo)學(xué)生進(jìn)行概括,去年的身高、今年的身高、相差數(shù)。追問(wèn):這三個(gè)量之間有怎樣的相等關(guān)系呢?

        去年的身高+長(zhǎng)高的8cm=今年的身高

        今年的身高-去年的身高=長(zhǎng)高的8cm

        今年的'身高-長(zhǎng)高的8cm=去年的身高

        你能根據(jù)這三個(gè)數(shù)量關(guān)系列出方程嗎?學(xué)生嘗試列方程。幾乎全班學(xué)生都是正確的。

        X+8=152 152-x=8 152-8=x

        追問(wèn)學(xué)生你對(duì)哪個(gè)方程有想法?學(xué)生一致認(rèn)為對(duì)第三個(gè)方程有想法?生1:這個(gè)根本沒(méi)有必要寫x,因?yàn)橹苯涌梢杂?jì)算了。生2:x不寫,就是一個(gè)算式,直接可以算了。我肯定到:列算式解決實(shí)際問(wèn)題時(shí),未知數(shù)始終作為一個(gè)“解決的目標(biāo)”不參加列式運(yùn)算,只能用已知數(shù)和運(yùn)算符號(hào)組成算式,所以這樣的x就沒(méi)有必要。接著讓學(xué)生解這兩個(gè)方程X+8=152 、152-x=8方程。學(xué)生發(fā)現(xiàn)152-x=8解出來(lái)的解是不正確的。告訴學(xué)生減數(shù)為未知數(shù)的方程我們小學(xué)階段不作要求,所以你們就無(wú)法解答了。接著,我再引導(dǎo)學(xué)生觀察這三個(gè)數(shù)量關(guān)系,他們之間有聯(lián)系嗎?其實(shí)減法是加法的逆運(yùn)算,是有加法轉(zhuǎn)變過(guò)來(lái)。因此,我們?cè)谒伎紨?shù)量關(guān)系時(shí),只要思考加法的數(shù)量關(guān)系,這是順向思維,解題思路更加直截了當(dāng),降低了思考的難度。接著只要把未知數(shù)以一個(gè)字母(如x)為代表和已知數(shù)一起參加列式運(yùn)算x+b=a,體會(huì)列方程解決問(wèn)題的優(yōu)越性。這就是我們今天學(xué)習(xí)的一種新的解決問(wèn)題的方法——列方程解決問(wèn)題。

        接著用同樣的教學(xué)方法探究bx=a的解決問(wèn)題。

        我這樣的教學(xué)不知道是否合理?其實(shí)小學(xué)生在學(xué)習(xí)加減法、乘除法時(shí),早就對(duì)四則運(yùn)算之間的關(guān)系有所感知,并積累了比較豐富的感性經(jīng)驗(yàn)。要不要運(yùn)用等式的性質(zhì)對(duì)學(xué)生再加以概括呢?

      《簡(jiǎn)易方程》教學(xué)反思5

        在本課教學(xué)中,我主要采用小組合作學(xué)習(xí),討論的方式,讓學(xué)生探究新知識(shí),效果較好。

        出示例題2,小組合作學(xué)習(xí),討論:

       、倌闶窃鯓永斫鈭D意的?

       、谀闶侨绾瘟蟹匠痰?

        ③你是根據(jù)什么解方程的?

       、茉鯓訖z驗(yàn)方程的解是否正確?然后班交流討論,展示學(xué)生的練習(xí)。

        指名回答,說(shuō)說(shuō)自己的分析。你對(duì)他的分析有什么要問(wèn)的嗎?

        教師總結(jié)解題關(guān)鍵。

        教學(xué)例3時(shí),讓學(xué)生觀察、分析,這道題與前面的`練習(xí)題比較有什么區(qū)別?這道題可以怎樣解?(先小組交流后個(gè)人解答)學(xué)生找出解題關(guān)鍵,培養(yǎng)一題多解的習(xí)慣與能力。

        最后讓學(xué)生做全課總結(jié):今天學(xué)習(xí)了什么知識(shí)?解方程的關(guān)鍵是什么?

        充分練習(xí),進(jìn)行思維訓(xùn)練,設(shè)計(jì)有趣的習(xí)題“幫小兔找家”:

        4x-12=20 3x=15 x+7=15 2x+3×2=

        18-2x=2 15÷3+4x=

        鞏固知識(shí),激發(fā)興趣。

      《簡(jiǎn)易方程》教學(xué)反思6

        在這節(jié)課的教學(xué)中,我從以下幾個(gè)方面入手:

        一、感受天平的平衡現(xiàn)象,悟出等式的性質(zhì)變化。

        在學(xué)習(xí)中,我以多媒體中天平的平衡來(lái)呈現(xiàn)等式的性質(zhì),學(xué)生能直觀形象的理解性質(zhì),平衡的條件是兩邊同時(shí)加上、或減少相同的重量,才能保持平衡。但具體到方程中應(yīng)用起來(lái)學(xué)生感覺(jué)活動(dòng)是獲取真知的有效途徑,通過(guò)以上的活動(dòng),學(xué)生可以很順利地得出結(jié)果:天平的兩側(cè)都加上相同的質(zhì)量,天平仍平衡。

        二、等式性質(zhì)解方程——初步感悟它的妙用

        在課堂上學(xué)生對(duì)用等式的性質(zhì)來(lái)解方程感到很陌生,在他們?cè)械?經(jīng)驗(yàn)中更喜歡用加減法各部分的關(guān)系來(lái)解,所以我們要特別注意引導(dǎo)學(xué)生認(rèn)識(shí)到用等式的性質(zhì)來(lái)解方程的優(yōu)越性,從而養(yǎng)成用等式的性質(zhì)來(lái)解方程的習(xí)慣。

        在整節(jié)課的教學(xué)中,其實(shí)學(xué)生是非常主動(dòng)的,他們總覺(jué)得天平能啟發(fā)著他們?nèi)ソ鉀Q這么神奇的方程,孩子們對(duì)方程都有一種難以割舍的好奇心。

        新課程的改革,使得小學(xué)的知識(shí)要體現(xiàn)與初中更加的接軌,五年級(jí)上冊(cè)第四單元“解簡(jiǎn)易方程”中進(jìn)行了一次新的改革。要求方程的解法要根據(jù)天平的原理來(lái)進(jìn)行解答,也就是說(shuō)要通過(guò)等式的性質(zhì)來(lái)解方程,這一方法雖然說(shuō)讓方程的解法找到了本質(zhì)的東西,但是也讓我感到了許多困惑

        1、從教材的編排上,整體難度下降,有意避開(kāi)了,形如:45—方程=23 24÷方程=6等類型的題目。把用等式解決的方法單一化了。在實(shí)際教學(xué)中我們要求學(xué)生較熟練地利用等式的方法來(lái)解方程,但用這樣的方法來(lái)解方程之后,書(shū)本不再出現(xiàn)方程前面是減號(hào)或除號(hào)的方程題了,學(xué)生在列方程解實(shí)際應(yīng)用時(shí),我們并不能刻意地強(qiáng)調(diào)學(xué)生不會(huì)列出方程在后面的方程,我們更頭痛于學(xué)生的實(shí)際解答能力。在實(shí)際的方程應(yīng)用中,這種情況是不可避免的。很顯然這存在著目前的局限性了。對(duì)于好的學(xué)生來(lái)說(shuō),我們會(huì)讓他們嘗試接受——解答方程在后面這類方程的解答方法,就是等號(hào)二邊同時(shí)加上方程,再左右換位置,再二邊減一個(gè)數(shù),真有點(diǎn)麻煩了。而且有的學(xué)生還很難掌握這樣方法。

        2、內(nèi)容看似少實(shí)際教得多。難度下降后,看起來(lái)教師要教的內(nèi)容變得少了,可以實(shí)際上反而是多了。教師要給他們補(bǔ)充方程前面是除號(hào)或減號(hào)的方程的解法。要教他們列方程時(shí)怎么避免方程前面是除號(hào)或減號(hào)的方程的出現(xiàn)等等。

      《簡(jiǎn)易方程》教學(xué)反思7

        本課為人教版第四單元教學(xué)內(nèi)容,本教材解方程方法利用了天平平衡的原理,采用了等式的性質(zhì)來(lái)教學(xué)解方程。形如x±a=b一類的方程利用等式的基本性質(zhì)一學(xué)生很容易解決,形如ax=b與x÷a=b一類的方程,利用等式的基本性質(zhì)二學(xué)生也很容易解決。但行如a-x=b和a÷x=b此類的方程,學(xué)生就無(wú)從下手了,如果利用等式的基本性質(zhì)解,方程變形的過(guò)程及算理解釋比較麻煩。解決問(wèn)題時(shí)當(dāng)需要列出形如a-x=b或a÷x=b的方程時(shí),我就要求學(xué)生根據(jù)實(shí)際問(wèn)題的數(shù)量關(guān)系,列成形如x+b=a或bx=a的方程。但我覺(jué)得回避這兩類問(wèn)題不是很好的方法,否則,我們的教學(xué)就會(huì)顯得片面和狹隘。如:一共有128人平均分成Х組,每組8人,學(xué)生們都不假思索地列出了128÷x=8,但是利用等式的基本性質(zhì)學(xué)生就不會(huì)解,但你也不能說(shuō)這個(gè)方程列錯(cuò)了呀。

        因此我當(dāng)有學(xué)生列了a-x=b或a÷x=b的方程時(shí),我借機(jī)教了利用算術(shù)思路解方程(被減數(shù)=差+減數(shù),被除數(shù)=商xx除數(shù))介紹老板教材的.解方程的方法;A(chǔ)好的孩子就容易接受新的方法,而基礎(chǔ)差的孩子就還是無(wú)法解答此類問(wèn)題。

        另外教材要求,在學(xué)生用等式基本性質(zhì)解方程時(shí),方程的變形過(guò)程應(yīng)該要寫出來(lái),等到熟練以后,再逐步省略。這樣的要求,在實(shí)際操作中,帶來(lái)了書(shū)寫上的繁瑣。因?yàn)橛玫仁交拘再|(zhì)解方程,每?jī)刹讲拍芡瓿梢淮畏匠痰淖冃。這相對(duì)于簡(jiǎn)單的方程,尚沒(méi)什么,但對(duì)一些稍復(fù)雜的方程,其解的過(guò)程就顯得太繁瑣了。

        看來(lái)教材利用等式的基本性質(zhì)來(lái)解簡(jiǎn)易方程也是存在著一些問(wèn)題,不知各位老師有什么好的方法來(lái)解決這些問(wèn)題呢?請(qǐng)不吝賜教!

      《簡(jiǎn)易方程》教學(xué)反思8

        長(zhǎng)期以來(lái),在小學(xué)教學(xué)解簡(jiǎn)易方程,是依據(jù)加減運(yùn)算的關(guān)系或乘除運(yùn)算之間的關(guān)系,這實(shí)際上是用算術(shù)的思路求未知數(shù)。這種方法到了中學(xué)又要另起爐灶,重新開(kāi)始。根據(jù)新課標(biāo)的要求,人教版教材從小學(xué)起就引入等式的基本性質(zhì),并以此為基礎(chǔ)導(dǎo)出解方程的方法,使學(xué)生擺脫算術(shù)思維方法中的局限性,有利于加強(qiáng)中小學(xué)的知識(shí)銜接。

        猜想是學(xué)生學(xué)習(xí)數(shù)學(xué)的一種重要方式,通過(guò)讓學(xué)生綜合已有的知識(shí)和經(jīng)驗(yàn)的基礎(chǔ)上經(jīng)歷等式的變化過(guò)程,不僅讓學(xué)生體會(huì)到數(shù)學(xué)來(lái)源于生活,還為猜想等式的性質(zhì)奠定了良好的基礎(chǔ)。學(xué)生一旦作出了猜想,就會(huì)迫不及待的想去驗(yàn)證自己的猜想是否正確,從而主動(dòng)地去探索新知。

        任何猜想都必須經(jīng)過(guò)驗(yàn)證,才能確定是否正確,而驗(yàn)證的過(guò)程也正是學(xué)生主動(dòng)學(xué)習(xí)探索數(shù)學(xué)知識(shí)的過(guò)程。學(xué)生通過(guò)自己動(dòng)手用天平稱一稱,驗(yàn)證自己的猜想,以一種自主探究的方式進(jìn)一步認(rèn)識(shí)了等式的性質(zhì),為后面學(xué)習(xí)解方程奠定了良好的基礎(chǔ)!芭e出生活中的'例子”體現(xiàn)了數(shù)學(xué)來(lái)源于生活,學(xué)到的數(shù)學(xué)知識(shí)也要應(yīng)用到生活當(dāng)中去的理念,讓學(xué)生體會(huì)到數(shù)學(xué)就在自己的身邊。這樣的設(shè)計(jì)不但極大地激發(fā)了學(xué)生的學(xué)習(xí)興趣,還有利于培養(yǎng)學(xué)生的自主探究能力和創(chuàng)新能力。

        學(xué)生在合作操作中,已經(jīng)對(duì)解方程有了一定的基礎(chǔ)和認(rèn)識(shí),能夠大概地說(shuō)出解方程的過(guò)程和依據(jù),而又一次讓同學(xué)之間同桌說(shuō)一說(shuō)后再全班交流體現(xiàn)了本節(jié)課的學(xué)習(xí)重點(diǎn)“理解并利用等式的性質(zhì)解方程”,“為什么要減去3”突破本節(jié)課的難點(diǎn)。在這個(gè)環(huán)節(jié)中教師還有針對(duì)性地指導(dǎo)了書(shū)寫的規(guī)范性和檢驗(yàn)的過(guò)程。師生之間的共同探討,顯示了一種平等的師生關(guān)系。

        練習(xí)中學(xué)生加深了對(duì)“方程的解”的認(rèn)識(shí),抓住了利用等式的性質(zhì)這一依據(jù)去解方程。不同層次的練習(xí)照顧了學(xué)生之間學(xué)習(xí)水平的差異,3X=8.4對(duì)等式的性質(zhì)進(jìn)行了拓展,有利于發(fā)散學(xué)生的思維。最后交流學(xué)習(xí)的收獲促進(jìn)了學(xué)生形成積極的學(xué)習(xí)心理。

      《簡(jiǎn)易方程》教學(xué)反思9

      《解簡(jiǎn)易方程》教學(xué)反思數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn)稿)》改變了小學(xué)階段解方程方法的教學(xué)要求,采用了等式的性質(zhì)來(lái)教學(xué)解方程,F(xiàn)將解方程的新舊方法舉例如下:

        老方法:

        x + 4 = 20

        x = 20-4

        依據(jù)運(yùn)算之間的關(guān)系:一個(gè)加數(shù)等于和減另一個(gè)加數(shù)。

        新方法:

        x + 4 = 20

        x + 4-4=20-4

        依據(jù)等式的基本性質(zhì)1:等式兩邊加上或減去相等的數(shù),等式不變。

        改革的原因(摘自教學(xué)參考書(shū)):

        新教材編寫者如此說(shuō)明:長(zhǎng)期以來(lái),小學(xué)教學(xué)簡(jiǎn)易方程時(shí),方程變形的依據(jù)總是加減運(yùn)算的關(guān)系或乘除運(yùn)算之間的關(guān)系,這實(shí)際上是用算術(shù)的思路求未知數(shù)。到了中學(xué)又要另起爐灶,引入等式的基本性質(zhì)或方程的同解原理來(lái)教學(xué)解方程。小學(xué)的思路及其算法掌握得越牢固,對(duì)中學(xué)代數(shù)起步教學(xué)的負(fù)遷移就越明顯。因此,現(xiàn)在根據(jù)《標(biāo)準(zhǔn)》的要求,從小學(xué)起就引入等式的基本性質(zhì),并以此為基礎(chǔ)導(dǎo)出解方程的方法。這就較為徹底地避免了同一內(nèi)容兩種思路、兩種算理解釋的現(xiàn)象,有利于加強(qiáng)中小學(xué)數(shù)學(xué)教學(xué)的銜接。

        從這我們不難看出,為了和中學(xué)教學(xué)解方程的方法保持一致,是此次改革的主要原因。

        那么,小學(xué)生學(xué)這樣的方法,實(shí)際操作中會(huì)出現(xiàn)什么樣的情況?這樣的改革有沒(méi)有什么問(wèn)題? 在我的教學(xué)過(guò)程中真的出現(xiàn)了問(wèn)題 。

        1.無(wú)法解如a-x=b和ax=b此類的'方程

        新教材認(rèn)為,利用等式基本性質(zhì)解方程后,解象x+a=b與x-a=b一類的方程,都可以歸結(jié)為等式兩邊同時(shí)減去(加上)a;解如ax=b與xa=b一類的方程,都可以歸結(jié)為等式兩邊同時(shí)除以(乘上)a。這就是所謂相比原來(lái)方法,思路更為統(tǒng)一的優(yōu)越性。然而,它有一個(gè)相應(yīng)的調(diào)整措施值得我們注意,那就是它把形如a-x=b和ax=b的方程回避掉了。原因是小學(xué)生還沒(méi)有學(xué)習(xí)正負(fù)數(shù)的四則運(yùn)算,利用等式的基本性質(zhì)解a-x=b,方程變形的過(guò)程及算理解釋比較麻煩;而ax=b的方程,因?yàn)槠浔举|(zhì)是分式方程,依據(jù)等式的基本性質(zhì)解需要先去分母,也不適合在小學(xué)階段學(xué)習(xí)。

        我認(rèn)為為了要運(yùn)用等式基本性質(zhì),卻回避掉了兩類方程,這似乎不妥。更重要的是,回避這兩類方程,新教材認(rèn)為并不影響學(xué)生列方程解決實(shí)際問(wèn)題。因?yàn)楫?dāng)需要列出形如a-x=b或ax=b的方程時(shí),總是要求學(xué)生根據(jù)實(shí)際問(wèn)題的數(shù)量關(guān)系,列成形如x+b=a或bx=a的方程。但我認(rèn)為,這樣的處理方法,有時(shí)更會(huì)無(wú)法避免地直接和方程思想發(fā)生矛盾。

        如3千克梨比5千克桃子貴0.5元。梨每千克2.5元,桃子每千克多少元?

        合理的做法應(yīng)是設(shè)桃子每千克X元,從順向思考,列出方程為2.53-5X=0.5。然而,按新教材的編排,因?yàn)閷W(xué)生現(xiàn)在不會(huì)解這樣的方程,所以要根據(jù)數(shù)量關(guān)系,轉(zhuǎn)列成5X+0.5=2.53之類的方程。又如:課本第62頁(yè)中的爸爸比小明大28歲,小明Х歲,爸爸40歲。很多學(xué)生根據(jù)爸爸比小明大28歲列出40-Х=28,可是無(wú)法求解,所以又轉(zhuǎn)成Х+28=40。

        很明顯,第二個(gè)方程是和方程思想的基本理念相違背的。我們知道,方程最大的意義,就是讓未知數(shù)參與進(jìn)式子,使考慮問(wèn)題更加直接自然。為實(shí)現(xiàn)這個(gè)目標(biāo),很重要的一點(diǎn),就是列式時(shí)應(yīng)盡量順向思考,以降低思考的難度。這是體現(xiàn)方程方法的優(yōu)越性必然要求。事實(shí)上,如果學(xué)生能夠列成5X+0.5=2.53 Х+28=40那就說(shuō)明他已經(jīng)非常熟悉其中的數(shù)量關(guān)系了,此時(shí),用算術(shù)方法即可,哪還有列方程來(lái)解的必要呢?我們又怎談引導(dǎo)學(xué)生認(rèn)識(shí)方程的優(yōu)越性呢?

        我們不難看出,根據(jù)現(xiàn)實(shí)情境列方程解決問(wèn)題,X當(dāng)作減數(shù)、當(dāng)作除數(shù),應(yīng)當(dāng)是很常見(jiàn)、很必要的現(xiàn)象。要學(xué)生學(xué)會(huì)解這些方程,是正常的教學(xué)要求,這是不應(yīng)該回避的,否則,我們的教學(xué)就會(huì)顯得片面和狹隘。

        2.解方程的書(shū)寫過(guò)程太繁瑣

        教材要求,在學(xué)生用等式基本性質(zhì)解方程時(shí),方程的變形過(guò)程應(yīng)該要寫出來(lái),等到熟練以后,再逐步省略。這樣的要求,在實(shí)際操作中,帶來(lái)了書(shū)寫上的繁瑣。

        因?yàn)橛玫仁交拘再|(zhì)解方程,每?jī)刹讲拍芡瓿梢淮畏匠痰淖冃。這相對(duì)于簡(jiǎn)單的方程,尚沒(méi)什么,但對(duì)一些稍復(fù)雜的方程,其解的過(guò)程就顯得太繁瑣了

        從這兩個(gè)方面來(lái)看,小學(xué)里學(xué)習(xí)等式的基本性質(zhì),并運(yùn)用它來(lái)解方程,在實(shí)際操作中,也存在許多的現(xiàn)實(shí)問(wèn)題。那么,如果說(shuō)用算術(shù)思路解方程對(duì)初中學(xué)習(xí)有負(fù)遷移,需要改革,現(xiàn)在改成用等式基本性質(zhì)解方程,同樣出現(xiàn)問(wèn)題,那我們又如何是好呢?

      《簡(jiǎn)易方程》教學(xué)反思10

        很多時(shí)候,我們大人都喜歡用方程來(lái)解題,這固然是因?yàn)榈搅酥袑W(xué)大量學(xué)習(xí)了各種各樣的方程,一元一次,一元二次,二元一次等等,但還有一個(gè)更重要的原因就是方程對(duì)解題思路的解放,列算式解決實(shí)際問(wèn)題時(shí),解題思路常常迂回曲折,而他從根本上讓學(xué)生脫離了繁瑣的思路分析,而列方程解決實(shí)際問(wèn)題,解題思路往往直截了當(dāng),降低了思維難度,它讓學(xué)生從一個(gè)簡(jiǎn)單的思路——找等量關(guān)系來(lái)解題。所以說(shuō),這個(gè)單元的知識(shí)如何教好,從而讓學(xué)生學(xué)好是非常重要的。

        一、用字母表示數(shù)要注意對(duì)數(shù)量關(guān)系的理解

        用字母表示數(shù)是學(xué)生學(xué)習(xí)代數(shù)初步知識(shí)的起步。在算術(shù)里,人們只對(duì)一些具體的、個(gè)別的數(shù)量關(guān)系進(jìn)行研究,引入用字母表示數(shù)后,就可以表達(dá)、研究具有更普遍意義的數(shù)量關(guān)系。可以說(shuō),學(xué)習(xí)代數(shù)就是從學(xué)習(xí)用字母表示數(shù)開(kāi)始的。

        對(duì)小學(xué)生來(lái)說(shuō),從具體事物的個(gè)數(shù)抽象出數(shù)是認(rèn)識(shí)上的一個(gè)飛躍,而由具體的、確定的數(shù)過(guò)渡到用字母表示抽象的、可變的數(shù),更是認(rèn)識(shí)上的一個(gè)飛躍。而且,在用字母表示未知數(shù)的基礎(chǔ)上,使學(xué)生解決實(shí)際問(wèn)題的數(shù)學(xué)工具,從列出算式解發(fā)展到列出方程解,這又是數(shù)學(xué)思想方法認(rèn)識(shí)上的一次飛躍,它將使學(xué)生運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題能力提高到一個(gè)新的水平。而在老師們的教學(xué)實(shí)踐中,由于在進(jìn)行用方程解題時(shí)格式非常重要,因此往往老師們教學(xué)時(shí)都會(huì)特別強(qiáng)調(diào)格式?墒菑膶W(xué)生的后續(xù)學(xué)習(xí)來(lái)看,我慢慢發(fā)現(xiàn),其實(shí)在教學(xué)這一部分知識(shí)時(shí),老師要注重學(xué)生對(duì)數(shù)量關(guān)系的理解,也就是說(shuō)要加強(qiáng)對(duì)學(xué)生的用含字母的式子表示數(shù)量的訓(xùn)練,也就是寫代數(shù)式的訓(xùn)練。因?yàn)檫@是列方程的基礎(chǔ)。所以,在這里教師一定要向?qū)W生強(qiáng)調(diào)并反復(fù)練習(xí)用含有字母的式子表示數(shù)量,讓學(xué)生明白以往學(xué)習(xí)的所有數(shù)量關(guān)系在用含有字母的式子表示數(shù)量中都能用到。如:原來(lái)有100元,用掉X元,一樣的要用減法求還剩下多少錢,買了3個(gè)練習(xí)本,每個(gè)A元,一樣的用乘法來(lái)求一共要多少錢。讓學(xué)生在這樣的大量的練習(xí)和強(qiáng)化中,知道含有字母的式子的數(shù)量關(guān)系和以前是一樣的,只是現(xiàn)在所用的符號(hào)不一樣,其實(shí),從廣義上來(lái)講,字母是一種符號(hào),數(shù)字也是一種符號(hào)。

        二、注重方程的意義的教學(xué)。

        方程是什么,教材中是這樣說(shuō)的,含有未知數(shù)的等式叫做方程。其實(shí),這只是從方程的表現(xiàn)形式來(lái)給方程下定義。也就是說(shuō),從表象上來(lái)說(shuō),如果一個(gè)式子是一個(gè)等式,并且含有未知數(shù),我們就說(shuō)這個(gè)式子是方程。但是,從數(shù)學(xué)的本質(zhì)上來(lái)說(shuō),方程的意義是什么呢?我們每個(gè)人都能夠熟練地列方程解決問(wèn)題,那么,在你列方程解決問(wèn)題時(shí),你每次抓住的核心是什么呢?是等量關(guān)系。所以,方程最本質(zhì)的教學(xué)意義應(yīng)是同一個(gè)量(或相等的量)用不同的形式去表達(dá)。但很多時(shí)候,老師們?cè)诮虒W(xué)方程的意義時(shí),往往只研究了方程的表面形式,也就是書(shū)上所說(shuō)的:含有未知數(shù)的等式叫方程,所以,老師們一般都是從等式入手,讓學(xué)生在認(rèn)識(shí)等式的基礎(chǔ)上引入未知數(shù),然后告訴學(xué)生,象這樣的含有未知數(shù)的等式叫方程。這樣一節(jié)課教下來(lái),學(xué)生除了會(huì)判斷一個(gè)關(guān)系式是不是方程,還知道了什么呢?這樣的學(xué)習(xí)對(duì)于后面的列方程解決問(wèn)題真的`有幫助嗎?我想,每個(gè)人靜下心來(lái)想想,應(yīng)該都會(huì)有答案。

        三、解方程的教學(xué)時(shí)不要被以前的教材編排所影響。

        新教材對(duì)于解方程的安排是變動(dòng)非常大的。以前我們是根據(jù)四則運(yùn)算各部分之間的關(guān)系來(lái)解方程。一開(kāi)始時(shí),還不和學(xué)生說(shuō)解方程,叫求未知數(shù)X。而現(xiàn)在的教材編排時(shí)是根據(jù)等式的性質(zhì)來(lái)解,當(dāng)然,在教材上并沒(méi)有歸納出等式的性質(zhì),畢竟,在學(xué)生的小學(xué)階段,只要讓學(xué)生明白,在等式的兩邊同時(shí)加、減、乘和除以同一個(gè)數(shù),等式仍然成立,這并不是完整意義上的等式的性質(zhì)。從學(xué)生的學(xué)習(xí)上來(lái)看,我覺(jué)得學(xué)生是比較容易接受這種方法的,特別是比較簡(jiǎn)單的方程,學(xué)生只要明白了要把誰(shuí)抵消,怎么抵消,基本上問(wèn)題不大。不過(guò),到了稍微復(fù)雜的方程出現(xiàn)了一些問(wèn)題,這也許是我在教學(xué)這一部分內(nèi)容時(shí),因?yàn)榭偸强紤]到學(xué)生不喜歡列方程(以往的學(xué)生都有這個(gè)問(wèn)題,可能就是覺(jué)得方程的格式繁瑣,好像步驟也不少,學(xué)生總不喜歡),所以,我就想怎么讓學(xué)生少寫點(diǎn)字,所以,在具體的書(shū)寫格式和步驟上,和教材稍微有點(diǎn)不同,我沒(méi)有象教材那樣寫出怎樣應(yīng)用等式的性質(zhì)的那一步,而是讓學(xué)生直接寫出這一步的結(jié)果,以至于到了后面,有部分學(xué)生就出現(xiàn)了一些問(wèn)題,特別是象5(X+3)=55這樣的方程,學(xué)生掌握得比較差,也可能是學(xué)生在用含有字母的式子表示數(shù)量時(shí),還是沒(méi)有很好地建立這樣的一個(gè)式子是一個(gè)整體,表示一個(gè)數(shù)量這樣的概念,盡管也進(jìn)行了一些強(qiáng)調(diào)。另一個(gè)方面就是具體的步驟可能也對(duì)學(xué)生有影響,所以,我個(gè)人認(rèn)為,可能讓學(xué)生按照書(shū)上的步驟來(lái)寫盡管麻煩一點(diǎn),但對(duì)于學(xué)生理清思路可能更有幫助。

        總的來(lái)說(shuō),我覺(jué)得簡(jiǎn)易方程這個(gè)單元,只要讓學(xué)生有很好地用字母或含有字母的式子表示數(shù)的基礎(chǔ),再加上對(duì)方程的本質(zhì)意義有清晰的理解,知道怎樣解方程,其他的應(yīng)該都不是問(wèn)題,畢竟,上面的這些都是為列方程解決問(wèn)題打基礎(chǔ);A(chǔ)打好了,后面的問(wèn)題就都能能迎刃而解了。

      《簡(jiǎn)易方程》教學(xué)反思11

        在本課教學(xué)中,我主要采用小組合作學(xué)習(xí),討論的方式,讓學(xué)生探究新知識(shí),效果較好。

        出示例題2,小組合作學(xué)習(xí),討論:

        ①你是怎樣理解圖意的?

       、谀闶侨绾瘟蟹匠痰模

        ③你是根據(jù)什么解方程的?④怎樣檢驗(yàn)方程的'解是否正確?然后班交流討論,展示學(xué)生的練習(xí)。

        指名回答,說(shuō)說(shuō)自己的分析。你對(duì)他的分析有什么要問(wèn)的嗎?

        教師總結(jié)解題關(guān)鍵。

        教學(xué)例3時(shí),讓學(xué)生觀察、分析,這道題與前面的練習(xí)題比較有什么區(qū)別?這道題可以怎樣解?(先小組交流后個(gè)人解答)學(xué)生找出解題關(guān)鍵,培養(yǎng)一題多解的習(xí)慣與能力。

        最后讓學(xué)生做全課總結(jié):今天學(xué)習(xí)了什么知識(shí)?解方程的關(guān)鍵是什么?

        充分練習(xí),進(jìn)行思維訓(xùn)練,設(shè)計(jì)有趣的習(xí)題“幫小兔找家”:4x-12=20 3x=15 x+7=15 2x+3×2=16

        18-2x=2 15÷3+4x=25

        鞏固知識(shí),激發(fā)興趣。

      《簡(jiǎn)易方程》教學(xué)反思12

        教學(xué)實(shí)錄:

        出示例題:6x-6.8×2=20

        師:請(qǐng)你觀察一下這道方程和我們?cè)瓉?lái)所學(xué)的方程有什么不一樣?

        生:它比原來(lái)多了一個(gè)6.8×2。

        生:它比我們?cè)瓉?lái)所學(xué)的方程多了一步運(yùn)算。

        師:你回答的非常好,這個(gè)方程比剛才解答的方程要多一步計(jì)算,這就是今天要學(xué)習(xí)的解簡(jiǎn)易方程。(板書(shū)課題)

        評(píng)析:

        “一切真理都要讓學(xué)生自己去獲得,由他重新發(fā)明,而不是草率地傳遞給他。”為此,我在教學(xué)中通過(guò)讓學(xué)生對(duì)新舊知識(shí)進(jìn)行比較,讓他們自己去獲取新知。繼而在教師的引導(dǎo)下嘗試求6x-6.8×2=20的解。

        我知道在前面已復(fù)習(xí)了ax土bx=c的方程,為推導(dǎo)求ax土b=c(b表示兩數(shù)的積)的方程作鋪墊;例題不但承接了上節(jié)課的內(nèi)容,而且引出了本節(jié)課的新內(nèi)容。這兩道題,幫助學(xué)生找到新舊知識(shí)最近的連接點(diǎn),為新知的學(xué)習(xí)做好鋪路架橋的工作。

        教學(xué)實(shí)錄:

        師:這道題是6x減去什么的差等于20,你覺(jué)得這道題開(kāi)始要怎樣解?

        生:應(yīng)先算6.8×2。

        師:為什么要先算6.8×2?

        生:因?yàn)榍懊媸菧p法,后面是加法,我們應(yīng)該按照四則混合運(yùn)算的順序先乘后減,所以要先算6.8×2。

        生:先算6.8×2就可以使方程變?yōu)?x-13.6=20,又回到了我們?cè)瓉?lái)所學(xué)的方程。

        生:因?yàn)樵谶@條方程中6.8×2可以先算出來(lái),所以要先算。

        師:這兩位同學(xué)很會(huì)動(dòng)腦筋也都觀察的非常仔細(xì)。解這個(gè)方程時(shí),按運(yùn)算順序能先算的一步就要先算出來(lái),然后再求方程的解,其中又把6x暫時(shí)看做一個(gè)數(shù)。

        師:現(xiàn)在就請(qǐng)一位同學(xué)上黑板來(lái)演示一遍,看這樣算行不行?其他同學(xué)也請(qǐng)自己在下面試試看。

        同學(xué)們踴躍地舉起了手。

        師:你們覺(jué)得他做的'對(duì)嗎?做的完整嗎?

        生:我覺(jué)得他做的是對(duì)的,我也做到這么多。

        同學(xué)們都在那里點(diǎn)頭稱是。

        師:再仔細(xì)看看!

        同學(xué)們感到很疑惑,一個(gè)個(gè)皺緊了眉頭。沉默片刻,突然有一只小手舉了起來(lái)。

        生:他的答案是正確的,但是我覺(jué)得他做的不完整。

        學(xué)生被這個(gè)說(shuō)法吸引了起來(lái),頓時(shí)三三兩兩地舉起了手。

        生:因?yàn)樗沒(méi)有檢驗(yàn)。

        師:你們同意嗎?

        生齊答:同意。

        師:對(duì)了,在解方程時(shí)我們一定要養(yǎng)成自覺(jué)檢驗(yàn)的習(xí)慣,以此來(lái)檢查方程的解對(duì)不對(duì)。

        讓學(xué)生在自己的本子上邊回憶邊檢驗(yàn),然后同桌互相檢查檢驗(yàn)的過(guò)程。

        評(píng)析:

        第一層:操作嘗試,理解概念

        為了讓學(xué)生更好地掌握怎樣去解答ax土b=c(b表示兩數(shù)的積)的方程,我讓學(xué)生自己去探究。

        第二層:潛移默化,推導(dǎo)方法

        有了上一層的前提教學(xué),在這一層,我就可以放手讓學(xué)生嘗試解答例題了。并提出問(wèn)題你覺(jué)得這道題開(kāi)始時(shí)要怎樣去解?為什么?該怎樣檢驗(yàn)方程的解?

        其實(shí)這些“想”的過(guò)程正是教師要教的過(guò)程,也是學(xué)生解題的的思考過(guò)程。這些自學(xué)提綱充當(dāng)了學(xué)生自學(xué)的“領(lǐng)路人”,學(xué)生通過(guò)提示,再思考該填上的內(nèi)容,新知識(shí)便順利地掌握了。

      《簡(jiǎn)易方程》教學(xué)反思13

        現(xiàn)行第九冊(cè)數(shù)學(xué)是新課程標(biāo)準(zhǔn)教材實(shí)施改革新內(nèi)容,其中的利弊在于:

        1、教改方向有點(diǎn)聚向七年級(jí)的教學(xué)方法,意圖是與七年級(jí)的教學(xué)接軌,這種設(shè)計(jì)本來(lái)是一件好事,讓小學(xué)生盡快接受初中一年級(jí)(七年級(jí))教學(xué)方法,并為七年級(jí)打下良好的學(xué)習(xí)基礎(chǔ)。

        2、課程改革改在五年級(jí)第一學(xué)期就有點(diǎn)不夠恰當(dāng)了,因?yàn)槲迥昙?jí)第一學(xué)期既沒(méi)有學(xué)約分,更沒(méi)有學(xué)六年級(jí)的倒數(shù),這樣使教師教起來(lái)非常困難,學(xué)生對(duì)這個(gè)知識(shí)的掌握也十分艱難。如:解方程:20÷2X=10如果用舊知識(shí)來(lái)解答是非常容易的,是根據(jù)“除數(shù)=被除數(shù)÷商”,就可以求出2X。再根據(jù)“一個(gè)因數(shù)=積÷另一個(gè)因數(shù)”就可以求出X了。

        而新教材的教法是方程兩邊同時(shí)×2X,先把方程左邊的2X消去,而20÷2X×2X從小學(xué)的算理上講,應(yīng)該是從左往右算,(在三至五年級(jí)學(xué)混合運(yùn)算都是這樣要求學(xué)生計(jì)算的)這樣就會(huì)使學(xué)生在心理上出現(xiàn)矛盾,很難接受這種算法;即使學(xué)生接受了這種算法,方程的'右邊出現(xiàn)了10×2X,這時(shí)又要在方程的兩邊同時(shí)除以10,便得到2=2X,再把2X和2調(diào)換位置,成為2X=2,然后再方程兩邊同時(shí)除以2,才求出X=1,這種算法既費(fèi)時(shí),對(duì)成績(jī)中等以下的學(xué)生又難理解,就會(huì)導(dǎo)致相當(dāng)部分學(xué)生對(duì)這部分知識(shí)落下,并對(duì)今后的學(xué)習(xí)會(huì)都產(chǎn)生厭學(xué)情緒,不利于小學(xué)生對(duì)知識(shí)的掌握,更激發(fā)不起學(xué)生學(xué)習(xí)的積極性。

        3、在稍復(fù)雜的方程的內(nèi)容安排上也欠妥。在這一內(nèi)容上,學(xué)習(xí)解稍復(fù)雜的方程的方法和列方程解應(yīng)用題同時(shí)進(jìn)行,在同一節(jié)課要解決兩個(gè)對(duì)于小學(xué)生來(lái)說(shuō)都是難點(diǎn)的學(xué)習(xí)內(nèi)容,至于教師是沒(méi)問(wèn)題的,但對(duì)學(xué)生來(lái)說(shuō)難度就大了,首先,前面所說(shuō)的解方程是比較簡(jiǎn)單的方程,相當(dāng)部分學(xué)生學(xué)得一塌糊涂,再進(jìn)行學(xué)習(xí)稍復(fù)雜的方程更難掌握。

        其次,正是有稍復(fù)雜的方程解答方法不能完全掌握,在學(xué)生的心理上就有解不開(kāi)的結(jié),所以對(duì)怎樣運(yùn)用好的方法去進(jìn)行列出解應(yīng)用題的方程,那就更難掌握,因此,有部分學(xué)生把這一知識(shí)采用的學(xué)習(xí)方法的放棄,這就不利于學(xué)生的學(xué)習(xí),更不能達(dá)到為七年級(jí)打好基礎(chǔ)的目的。

        以上三點(diǎn)是本人在教簡(jiǎn)易方程中感受最深的淺見(jiàn),不知各位同行是否有這種感受,請(qǐng)各位同行多提這新教材好教學(xué)方法,本人樂(lè)意接受。謝謝!

      《簡(jiǎn)易方程》教學(xué)反思14

        “簡(jiǎn)易方程的整理與復(fù)習(xí)”是人教版數(shù)學(xué)五年級(jí)上學(xué)期教學(xué)內(nèi)容,本課的教學(xué)目標(biāo)是通過(guò)練習(xí)使學(xué)生進(jìn)一步加強(qiáng)對(duì)方程意義的理解,知道方程的解與解方程的區(qū)分,等式與方程的區(qū)分。并能根據(jù)四則運(yùn)算之間的關(guān)系解方程。能靈活根據(jù)數(shù)量間的關(guān)系選擇方程或算式進(jìn)行解答。教學(xué)重點(diǎn)是理解方程的意義,并能正確解方程。教學(xué)難點(diǎn)是能靈活根據(jù)數(shù)量間的關(guān)系選擇方程或算式進(jìn)行解答。在教學(xué)本課時(shí),我主要是通過(guò)練習(xí),對(duì)簡(jiǎn)易方程的有關(guān)概念進(jìn)行梳理,使得學(xué)生進(jìn)一步加強(qiáng)理解和應(yīng)用,達(dá)到復(fù)習(xí)課的教學(xué)要求。在練習(xí)時(shí),我以“闖關(guān)”的形式進(jìn)行,教學(xué)設(shè)計(jì)新穎,倍受學(xué)生喜歡。結(jié)束后,學(xué)生的掌握情況很好,興趣也很高。但如果這節(jié)課能設(shè)計(jì)一些更有坡度的'練習(xí),這樣就能在課堂上發(fā)現(xiàn)學(xué)生的“錯(cuò)”,在課堂上“糾錯(cuò)”。那么這節(jié)課會(huì)更豐滿,學(xué)生學(xué)習(xí)到的知識(shí)會(huì)更全面,效果就更好了。要達(dá)得這一程度,我還要繼續(xù)加強(qiáng)自身學(xué)習(xí),多鉆研多思考,使自己的課堂能成為吸引學(xué)生的“游樂(lè)場(chǎng)”。

      《簡(jiǎn)易方程》教學(xué)反思15

        今天早上在庫(kù)溝小學(xué)聽(tīng)了張福華老師的《簡(jiǎn)易方程的整理和復(fù)習(xí)》這節(jié)復(fù)習(xí)課。這是我第一次聽(tīng)復(fù)習(xí)課,以往只是從教學(xué)策略上了解復(fù)習(xí)課的教學(xué)流程,當(dāng)今天真真正正的傾聽(tīng)了一節(jié)復(fù)習(xí)課后,感受頗深,所學(xué)甚多,只奈何有言吐不出,下面就簡(jiǎn)單說(shuō)一些聽(tīng)完這節(jié)課的體會(huì)。

        首先,張老師的語(yǔ)言簡(jiǎn)練干脆,善于利用名言名句。

        在課的開(kāi)始,大屏幕上就展示出了俄國(guó)烏申斯基的一句話:“裝著一些片段的,沒(méi)有聯(lián)系的知識(shí)的頭腦,就像一個(gè)亂七八糟的倉(cāng)庫(kù),主人從那里是什么也找不出來(lái)的。”這句話的展示,讓學(xué)生一下子就了解了整理的重要性,也了解了這節(jié)課的目的所在。在回顧整理,構(gòu)建網(wǎng)絡(luò)這一環(huán)節(jié),張老師在讓學(xué)生自己看課本例題的知識(shí)點(diǎn)時(shí)又說(shuō)了一句“不動(dòng)筆墨不讀書(shū)”,提醒了學(xué)生看例題時(shí)可以適時(shí)的進(jìn)行批畫,將遺忘的知識(shí)點(diǎn)突出顯示出來(lái)。在課的最后又課件展示了韋達(dá)和愛(ài)因斯坦的名言警句。

        其次,目錄歸納知識(shí)點(diǎn),清楚明了。

        我想所有的老師都會(huì)頭疼復(fù)習(xí)某一單元或某一冊(cè)課本時(shí)知識(shí)點(diǎn)的歸納,只奈何沒(méi)有更好的.方法可以把所有知識(shí)點(diǎn)系統(tǒng)的展現(xiàn)給學(xué)生。本節(jié)課張老師的方法讓我眼前一亮,目錄展示法,讓所有知識(shí)點(diǎn)的區(qū)別和聯(lián)系清楚的擺了出來(lái),方便了學(xué)生的回顧和整理。

        最后,練習(xí)充實(shí)有趣,層次分明。

        闖關(guān)形式的練習(xí)提高了學(xué)生的積極性,激發(fā)了學(xué)生的好勝心。在一,二,三的闖關(guān)中,依次將基礎(chǔ)知識(shí)點(diǎn),重難點(diǎn)進(jìn)行了練習(xí),穩(wěn)固。學(xué)生在回答闖關(guān)的答案時(shí),張老師經(jīng)常會(huì)問(wèn)一個(gè)為什么,引導(dǎo)學(xué)生對(duì)知識(shí)點(diǎn)進(jìn)行再回顧。例如,在一名學(xué)生回答bX8等于8b時(shí),問(wèn)為什么不是b8?在學(xué)生回答aXa=a的平方時(shí),問(wèn)為什么不是2a?看似不經(jīng)意的詢問(wèn),卻鞏固了細(xì)微處的知識(shí)點(diǎn)。

        當(dāng)然,張老師的課還有許多值得我學(xué)習(xí)的地方。例如,創(chuàng)設(shè)了有效地復(fù)習(xí)情景,親和力強(qiáng),能及時(shí)喚起回憶,將零散的知識(shí)系統(tǒng)化等等。通過(guò)這節(jié)課,讓我更清楚的了解了復(fù)習(xí)課的教學(xué)模式,對(duì)以后上好復(fù)習(xí)課有了更多的信心。

      【《簡(jiǎn)易方程》教學(xué)反思】相關(guān)文章:

      簡(jiǎn)易方程教學(xué)反思01-06

      簡(jiǎn)易方程教學(xué)反思01-02

      簡(jiǎn)易方程的教學(xué)反思03-07

      簡(jiǎn)易方程教學(xué)反思[實(shí)用]07-10

      解簡(jiǎn)易方程的教學(xué)反思02-22

      《解簡(jiǎn)易方程》教學(xué)反思05-20

      解簡(jiǎn)易方程教學(xué)反思04-07

      簡(jiǎn)易方程教學(xué)反思(精)07-10

      簡(jiǎn)易方程教學(xué)反思15篇02-26