- 相關(guān)推薦
《三角形的內(nèi)角和》教案
作為一名默默奉獻(xiàn)的教育工作者,就不得不需要編寫教案,編寫教案有利于我們科學(xué)、合理地支配課堂時(shí)間。那么什么樣的教案才是好的呢?以下是小編為大家收集的《三角形的內(nèi)角和》教案,歡迎大家分享。
《三角形的內(nèi)角和》教案1
學(xué)科:數(shù)學(xué)
年級/冊:4年級下冊
教材版本:人教版
課題名稱:4年級下冊第五單元《三角形的內(nèi)角和》
教學(xué)目標(biāo):
掌握探究方法(猜想—驗(yàn)證—?dú)w納總結(jié)),學(xué)會用“轉(zhuǎn)化”的數(shù)學(xué)思想探究三角形內(nèi)角和。
重難點(diǎn)分析
重點(diǎn)分析:教材在呈現(xiàn)教學(xué)內(nèi)容時(shí),不但重視知識的形成過程,而且注意留給學(xué)生充分進(jìn)行自主探索和交流的空間。三角形的內(nèi)角和的性質(zhì)沒有直接給出,而是提供了豐富多彩的動手實(shí)踐的素材,讓學(xué)生通過探索、實(shí)驗(yàn)、討論、交流而獲得,從而讓學(xué)生在動手操作,積極探索的活動過程中掌握知識,積累數(shù)學(xué)經(jīng)驗(yàn),同時(shí)發(fā)展空間觀念和推理能力,不斷提高自己的思維水平。
難點(diǎn)分析:通過近四年的數(shù)學(xué)學(xué)習(xí),學(xué)生已初步掌握了一些學(xué)習(xí)數(shù)學(xué)的基本方法,具備了一定的動手操作、觀察比較和合作交流的能力。但是圍繞數(shù)學(xué)問題開展初步的討論活動,能比較清楚的表達(dá)自己的意見,認(rèn)真傾聽他人的發(fā)言,這些初步的數(shù)學(xué)交流能力還欠缺。
教學(xué)方法:
1、探索過程中培養(yǎng)學(xué)生的動手實(shí)踐能力、協(xié)作能力及創(chuàng)新意識和探究精神,發(fā)展學(xué)生的空間思維能力,同時(shí)使學(xué)生養(yǎng)成獨(dú)立思考的習(xí)慣。
2、在活動中,讓學(xué)生體驗(yàn)主動探究數(shù)學(xué)規(guī)律的樂趣,體驗(yàn)學(xué)數(shù)學(xué)的價(jià)值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情。
教學(xué)過程
導(dǎo)入:各位同學(xué)大家好,今天由我來和大家一起學(xué)習(xí)人教版四年級下冊《三角形的內(nèi)角和》,我們前面學(xué)習(xí)和了解了三角形的相關(guān)知識,請大家說說三角形按角分,可以分成哪幾類?知識講解(難點(diǎn)突破)
例五:畫出幾個不同類型的三角形。量一量,算一算,三角形3個內(nèi)角的和各是多少度?解決這個問題的時(shí)候,我們先來了解一下什么是三角形的內(nèi)角和?
講解:三角形內(nèi)兩條邊所夾的角就叫做這個三角形的內(nèi)角。每個三角形都有三個內(nèi)角,這三個內(nèi)角的度數(shù)加起來就是三角形的內(nèi)角和。
(一)量一量:我們?nèi)绾谓鉀Q這個問題呢?
同學(xué)們請看,這里有一個直角三角形,我們先分別量一量這個直角三角形三個內(nèi)角的度數(shù)并標(biāo)注。90°30°60°現(xiàn)在我們將這三個內(nèi)角的度數(shù)加起來等于180度°通過測量計(jì)算發(fā)現(xiàn)這個直角三角形內(nèi)角和都是180°,是不是所有直角三角形的內(nèi)角和都是180°呢?同學(xué)們你們也來量一量你剛才畫的直角三角形3個內(nèi)角的度數(shù),算一算是不是也和老師的結(jié)果一樣呢?注意在測量要認(rèn)真,力求準(zhǔn)確。停頓數(shù)秒從剛才的測量和計(jì)算結(jié)果中,你發(fā)現(xiàn)了什么?你是不是發(fā)現(xiàn)直角三角形的內(nèi)角和都是180°當(dāng)然有些同學(xué)的測量結(jié)果不是等于180°,這是我們在測量時(shí),由于在測量工具、測量方法等各方面的原因,使我們的測量結(jié)果存在一定的誤差。實(shí)際上,直角三角形三角形內(nèi)角和就等于180°。
。ǘ
1、提出猜想:剛才我們通過測量和計(jì)算發(fā)現(xiàn)了直角三角形內(nèi)角和等于180,那你能不能大膽的猜測一下:銳角三角形內(nèi)角和,鈍角三角形的內(nèi)角和是不是也是180°呢?
2、動手操作,驗(yàn)證猜想這時(shí)每個同學(xué)的心中都有了猜測的'答案,這個猜想是否成立呢?除了用量角器量一量,你還有其他辦法來驗(yàn)證嗎?聰明的你,是不是想到好辦法了,那就快快動手吧!
方法:
A、拼一拼的方法
B、折一折的方法把三角形的角1折向它的對邊,使頂點(diǎn)落在對邊上,然后另外兩個角相向?qū)φ,使它們的頂點(diǎn)與角1的頂點(diǎn)互相重合,通過折疊的方法,三角形的三個內(nèi)角折到一起正好組成一個平角,所以也能證明三角形的內(nèi)角和是180°。
同學(xué)們我們通過量一量拼一拼折一折,發(fā)現(xiàn)無論是直角三角形,銳角三角形鈍角三角形,它們內(nèi)角和都等于180度,我們通過動作操作,折一折,拼一拼,把三角形的三個內(nèi)角轉(zhuǎn)換成了一個平角,成功的得到了這個結(jié)論,讓我們?yōu)樽约旱某晒恼!齊讀結(jié)論。(板書:得到結(jié)論)
小結(jié):通過剪拼的方法,把三個角剪下來,拼在一起,三角形的三個內(nèi)角正好拼成一個平角,因?yàn)槠浇鞘?80°,所以三角形的內(nèi)角和是180°三角形的形狀和大小雖然不同,但是三角形的內(nèi)角和都是180度。說明三角形的內(nèi)角和和他的形狀大小無關(guān)
課堂練習(xí)(難點(diǎn)鞏固)
總結(jié):我們今天用量一量,折一折,拼一拼的方法得到了三角形的內(nèi)角和等于180°這一結(jié)論,希望同學(xué)們在在以后的學(xué)習(xí)中大膽探索,去發(fā)現(xiàn)數(shù)學(xué)的奧秘吧!我們今天的課程就到這里了,同學(xué)們再見!
《三角形的內(nèi)角和》教案2
一、學(xué)生知識狀況分析
學(xué)生技能基礎(chǔ):學(xué)生在以前的幾何學(xué)習(xí)中,已經(jīng)學(xué)習(xí)過平行線的判定定理與平行線的性質(zhì)定理以及它們的嚴(yán)格證明,也熟悉三角形內(nèi)角和定理的內(nèi)容,而本節(jié)課是建立在學(xué)生掌握了平行線的性質(zhì)及嚴(yán)格的證明等知識的基礎(chǔ)上展開的,因此,學(xué)生具有良好的基礎(chǔ)。
活動經(jīng)驗(yàn)基礎(chǔ): 本節(jié)課主要采取的 活動形式是學(xué)生非常熟悉的自主探究與合作交流的學(xué)習(xí)方式,學(xué)生具有較熟悉的活動經(jīng)驗(yàn).
二、教學(xué)任務(wù)分析
上一節(jié)課的學(xué)習(xí)中,學(xué)生對于平行線的判定定理和性質(zhì)定理以及與平行線相關(guān)的簡單幾何證明是比較熟悉的,他們已經(jīng)具有初步的幾何意識,形成了一定的邏輯思維能力和推理能力,本節(jié)課安排《三角形內(nèi)角和定理的證明》旨在利用平行線的相關(guān)知識來推導(dǎo)出新的定理以及靈活運(yùn)用新的定理解決相關(guān)問題。為此,本節(jié)課的教學(xué)目標(biāo)是:
知識與技能:(1)掌握三角形內(nèi)角和定理的證明及簡單應(yīng)用。
(2)靈活運(yùn)用三角形內(nèi)角和定理解決相關(guān)問題。
數(shù)學(xué)能力:用多種方法證明三角形定理,培養(yǎng)一題多解的能力。
情感與態(tài)度:對比過去撕紙等探索過程,體會思維實(shí)驗(yàn)和符號化 的理性作用.
三、教學(xué)過程分析
本節(jié)課的設(shè)計(jì)分為四個環(huán)節(jié):情境引入探索新知反饋練習(xí)課堂小結(jié)
第一環(huán)節(jié):情境引入
活動內(nèi)容:(1)用折紙的方法驗(yàn)證三角形內(nèi)角和定理.
實(shí)驗(yàn)1:先將紙片三角形一角折向其對邊,使頂點(diǎn)落在對邊上,折線與對邊平行(圖6-38(1))然后把另外兩角相向?qū)φ,使其頂點(diǎn)與已折角的頂點(diǎn)相嵌合(圖(2)、(3)),最后得圖(4)所示的結(jié)果
(1) (2) (3) (4)
試用自己的語言說明這一結(jié)論的證明思路。想一想,還有其它折法嗎?
(2)實(shí)驗(yàn)2:將紙片三角形三頂角剪下,隨意將它們拼湊在一起。
試用自己的語言說明這一結(jié)論的證明思路。想一想,如果只剪下一個角呢?
活動目的:
對比過去撕紙等探索過程,體會思維實(shí)驗(yàn)和符號化的理性作用。將自己的操作轉(zhuǎn)化為符號語言對于學(xué)生來說還存在一定困難,因此需要一個臺階,使學(xué)生逐步過渡到嚴(yán)格的證明.
教學(xué)效果:
說理過程是學(xué)生所熟悉的,因此,學(xué)生能比較熟練地說出用撕紙的方法可以驗(yàn)證三角形內(nèi)角和定理的原因。
第二環(huán)節(jié):探索新知
活動內(nèi)容:
① 用嚴(yán)謹(jǐn)?shù)淖C明來論證三角形內(nèi) 角和定理.
、 看哪個同學(xué)想的方法最多?
方法一:過A點(diǎn)作DE∥BC
∵DE∥BC
DAB=B,EAC=C(兩直線平行,內(nèi)錯角相等)
∵DAB+BAC+EAC=180
BAC+ C=180(等量代換)
方法二:作BC的延長線CD,過點(diǎn)C作射線CE∥BA.
∵CE∥BA
ECD(兩直線平行,同位角相等)
ACE(兩直線平行,內(nèi)錯角相等)
∵BCA+ACE+ECD=180
B+ACB=180(等量代換)
活動目的:
用平行線的判定定理及性質(zhì)定理來推導(dǎo)出新的定理,讓學(xué)生再次體會幾何證明的嚴(yán)密性和數(shù)學(xué)的.嚴(yán)謹(jǐn),培養(yǎng) 學(xué)生的邏輯推理能力。
教學(xué)效果:
添輔助線不是盲目的,而是為了證明某一結(jié)論,需要引用某個定義、公理、定理,但原圖形不具備直接使用它們的條件,這時(shí)就需要添輔助線創(chuàng)造條件,以達(dá)到 證明的目的.
第三環(huán)節(jié):反饋練習(xí)
活動內(nèi)容:
(1)△ABC中可以有3個銳角嗎? 3個直角呢? 2個直角呢?若有1個直角另外兩角有什么特點(diǎn)?
(2)△ABC中 ,C=90,A=30,B=?
(3)A=50,C,則△ABC中B=?
(4)三角形的三個內(nèi)角中,只能有____個直角或____個鈍角.
(5)任何一個三角形中,至少有____個銳角;至多有____個銳角.
(6)三角形中三角之比 為1∶2∶3,則三個角各為多少度?
(7)已知:△ABC中,B=2A。
(a)求B的度數(shù);
(b)若BD是AC邊上的高,求 DBC的度數(shù)?
活動目的:
通過學(xué)生的 反饋練習(xí),使教師能全面了解學(xué)生對三角形內(nèi)角和定理的概念是否清楚,能否靈活運(yùn)用三角形內(nèi)角和定理,以便教師能及時(shí)地進(jìn)行查缺補(bǔ)漏.
教學(xué)效果:
學(xué)生對于三角形內(nèi)角和定理的掌握是非常熟練,因此,學(xué)生能較好地解決與三角形內(nèi)角和定理相關(guān)的問題。
第四環(huán)節(jié):課堂小結(jié)
活動內(nèi)容:
、 證明三角形內(nèi)角和定理有哪幾種方法?
② 輔助線的作法技巧.
、 三 角形內(nèi)角和定理的簡單應(yīng)用.
活動目的:
復(fù)習(xí)鞏固本課知識,提高學(xué)生的掌握程度.
教學(xué)效果:
學(xué)生對于三角形內(nèi)角和定理的幾種不同的證明方法的理解比較深刻,并能熟練運(yùn)用三角形內(nèi)角和定理進(jìn)行相關(guān)證明.
課后練習(xí):課本第239頁隨堂練習(xí);第241頁習(xí)題6.6第1,2,3題
四、教學(xué)反思
三角形的有關(guān)知識是空間與圖形中最為核心、最為重要的內(nèi)容,它不僅是最基本的直線型平面圖形,而且?guī)缀跏茄芯克衅渌鼒D形的工具和基礎(chǔ).而三角形內(nèi)角和定理又是三角形中最為基礎(chǔ)的知識,也是學(xué)生最為熟悉且能與小學(xué)、中學(xué)知識相關(guān)聯(lián)的知識,看似簡單,但如果處理不好,會導(dǎo)致學(xué)生有厭煩心理,為此,本節(jié)課的設(shè)計(jì)力圖實(shí)現(xiàn)以下特點(diǎn):
(1) 通過折紙與剪紙等操作讓學(xué)生獲得直接經(jīng)驗(yàn),然后從學(xué)生的直接經(jīng)驗(yàn)出發(fā),逐步轉(zhuǎn)到符號化處理,最后達(dá)到推理論證的要求。
(2) 充分展示學(xué)生的個性,體現(xiàn)學(xué)生是學(xué)習(xí)的主人這一主題。
(3) 添加輔助線是教學(xué)中的一個難點(diǎn), 如何添加輔助線則應(yīng)允許學(xué)生展開思考并爭論,展示學(xué)生的思維過程,然后在老師的引導(dǎo)下達(dá)成共識。
《三角形的內(nèi)角和》教案3
教學(xué)內(nèi)容:
人教版義務(wù)教育課程標(biāo)準(zhǔn)試驗(yàn)教科書數(shù)學(xué)四年級下冊第67頁。
設(shè)計(jì)理念:
遵循由特殊到一般的規(guī)律進(jìn)行探究活動是這節(jié)課設(shè)計(jì)的主要特點(diǎn)之一!稊(shù)學(xué)課程標(biāo)準(zhǔn)》指出,讓學(xué)生學(xué)習(xí)有價(jià)值的數(shù)學(xué),讓學(xué)生帶著問題、帶著自己的思想、自己的思維進(jìn)入數(shù)學(xué)課堂,對于學(xué)生的數(shù)學(xué)學(xué)習(xí)有著重要作用。因此,我嘗試著將數(shù)學(xué)文本、課外預(yù)習(xí)、課堂教學(xué)三方有機(jī)整合,在質(zhì)疑、解疑、釋疑中展開教學(xué),培養(yǎng)學(xué)生提出問題、分析問題和解決問題的探究能力。
教材分析:
三角形的內(nèi)角和是三角形的一個重要特征。本課是安排在學(xué)習(xí)三角形的概念及分類之后進(jìn)行的,它是學(xué)生以后學(xué)習(xí)多邊形的內(nèi)角和及解決其它實(shí)際問題的基礎(chǔ)。學(xué)生在掌握知識方面:已經(jīng)掌握了三角形的分類,比較熟悉平角等有關(guān)知識;能力方面:經(jīng)過三年多的學(xué)習(xí),已具備了初步的動手操作能力和主動探究能力以及合作學(xué)習(xí)的習(xí)慣。因此,教材很重視知識的探索與發(fā)現(xiàn),安排了一系列的實(shí)驗(yàn)操作活動。教材呈現(xiàn)教學(xué)內(nèi)容時(shí),不但重視體現(xiàn)知識的形成過程,而且注意留給學(xué)生充分進(jìn)行自主探索和交流的空間,為教師靈活組織教學(xué)提供了清晰的思路。概念的形成沒有直接給出結(jié)論,而是通過量、算、拼等活動,讓學(xué)生探索、實(shí)驗(yàn)、發(fā)現(xiàn)、討論交流、推理歸納出三角形的內(nèi)角和是180。
學(xué)情分析:
學(xué)生已經(jīng)掌握三角形特性和分類,熟悉了鈍角、銳角、平角這些角的知識,大多數(shù)學(xué)生已經(jīng)在課前通過不同的途徑知道三角形的內(nèi)角和是180度的結(jié)論,但不一定清楚道理,所以本課的設(shè)計(jì)意圖不在于了解,而在于驗(yàn)證,讓學(xué)生在課堂上經(jīng)歷研究問題的過程是本節(jié)課的'重點(diǎn)。四年級的學(xué)生已經(jīng)初步具備了動手操作的意識和能力,并形成了一定的空間觀念,能夠在探究問題的過程中,運(yùn)用已有知識和經(jīng)驗(yàn),通過交流、比較、評價(jià)尋找解決問題的途徑和策略。
教學(xué)目標(biāo):
1. 使學(xué)生經(jīng)歷自主探索三角形的內(nèi)角和的過程,知道三角形的內(nèi)角和是180°,能運(yùn)用這一規(guī)律解決一些簡單的問題。
2. 使學(xué)生在觀察、操作、分析、猜想、驗(yàn)證、合作、交流等具體活動中,提高動手操作能力和數(shù)學(xué)思考能力。
3. 使學(xué)生在參與數(shù)學(xué)學(xué)習(xí)活動的過程中,獲得成功的體驗(yàn),感受探索數(shù)學(xué)規(guī)律的樂趣,產(chǎn)生喜歡數(shù)學(xué)的積極情感,培養(yǎng)積極與他人合作的意識
《三角形的內(nèi)角和》教案4
教學(xué)目標(biāo):
1、讓學(xué)生親自動手,通過量、剪、拼等活動,發(fā)現(xiàn)并證實(shí)三角形的內(nèi)角和是180°,應(yīng)用三角形內(nèi)角和的知識解決實(shí)際問題。
2、讓學(xué)生在動手獲取知識的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識,探索精神和實(shí)踐能力。
重點(diǎn)、難點(diǎn):
經(jīng)歷“三角形內(nèi)角和是180°”這一知識的形成,發(fā)展和應(yīng)用的全過程。
三角形內(nèi)角和是180°的探索和驗(yàn)證。
教學(xué)過程:
一、揭示課題
1、今天我們一起來學(xué)習(xí)三角形的內(nèi)角和,那什么是三角形的內(nèi)角和?(三角形里面的角),它有幾個內(nèi)角?(三個)出示紙片,那什么又是三角形的內(nèi)角和呢?(把三角形的三個角的度數(shù)加起來就是三角形的內(nèi)角和)
出示課件
2、提出問題,為后面做鋪墊。
現(xiàn)在有3個三角形(出示課件),直角三角形說:“我是直角三角形,我的內(nèi)角和最大”鈍角三角形說:“我有一個鈍角,比你們?nèi)齻角都大,所以我的內(nèi)角和才是最大的。銳角三角形說:“我雖然是銳角三角形,但我的個頭最大,所以我的內(nèi)角和才是最大的。
孩子們,它們這樣吵起來可不是辦法呀!你們可知道它們誰的'內(nèi)角和最大呢?那我們就一起來證明給他們看。
二、新授
1、任意畫不同的類型的三角形,算一算三個內(nèi)角和是多少度。我們就畫三個不同類型的三角形,算一算三個內(nèi)角和是多少度,我們有三大組,為了節(jié)約時(shí)間,每一大組畫一種又分幾小組,三人一小組,一人畫,一人量,一人記錄。(小組合作,畫圖,量角,記錄,計(jì)算)
指名匯報(bào)結(jié)果并板書(至少一種一個板書),有不同意見的舉手,相差1、2度很正常,量角會有誤差(你們完成的又快又好,因此可見小組合作很到位)
師出示一個大直角三角板,請大家算一算這個三角板的內(nèi)角和是多少?
。ㄈ切蔚膬(nèi)角和都是一樣大的,都是180°,僅僅一個實(shí)驗(yàn)還不能讓它們心服口服,下面我們再來做兩個實(shí)驗(yàn),讓它們心服口服)
1、拼一拼,折一折
孩子們,我們又活動起來吧,拼一拼折一折,讓它們看一看,拿出你們準(zhǔn)備好的三角形。我們一起來:拿出一個三角形(不管形狀),撕下三個角,然后拼在一起(注意三個角的頂點(diǎn)要在同一個點(diǎn)上)你們發(fā)現(xiàn)了什么?(拼成了一個平角,這一點(diǎn)就是平角的頂點(diǎn))
我們再拿出一個三角形,折一折(注意科學(xué)的嚴(yán)謹(jǐn)性,折的時(shí)候不留很寬的縫隙)你又發(fā)現(xiàn)了什么?(這個三角形還是組成了一個平角)
通過這三次實(shí)驗(yàn),我們可以得出結(jié)論:三角形的內(nèi)角和等于180°,不分形狀,不分大小,任何一個三角形的內(nèi)角和都是180°
此時(shí),這三個三角形還爭吵嗎?它們都心服口服了。
孩子們,你們真了不起,輕而易舉就平息了一場爭吵,F(xiàn)在你能不能利用所學(xué)知識解決一些問題呢?
三、練習(xí)
1、搶答游戲(答對的給你的那一小組加一分)
①
這個三角形的內(nèi)角和是多少度。
②
把這個三角形平均分成兩個小三角形,每個小三角形是多少度。
③
這個小三角形再分成一大一小兩個三角形,這個三角形的內(nèi)角和分別是多少度?
、
三個小三角形拼成一個更大的三角形,它的內(nèi)角和是多少度?
2、智慧角
3、判斷(用手語表示)(哪個小組同學(xué)全部舉手,就由哪個小組回答,口說手劃答對加一分)
4、知識擴(kuò)展
其實(shí)三角形的內(nèi)角和是一個小朋友發(fā)現(xiàn)并提出來的,當(dāng)時(shí)他只有12歲,比你們大一點(diǎn)點(diǎn),真了不起,你們想知道他是誰嗎?(帕斯卡)
出示課件
孩子們,其實(shí)你們跟他們同樣聰明,以后,我們就利用所學(xué)知識去發(fā)現(xiàn)探索新的知識和規(guī)律,只要努力,就一定會成功的,孩子們加油吧!
四、總結(jié)
任何一個三角形不分大小,不分形狀,它們的內(nèi)角和都是180°
《三角形的內(nèi)角和》教案5
教學(xué)要求
1.通過動手操作,使學(xué)生理解并掌握三角形的內(nèi)角和是180°的結(jié)論。
2.能運(yùn)用三角形的內(nèi)角和是180°這一規(guī)律,求三角形中未知角的度數(shù)。
3.培養(yǎng)學(xué)生動手動腦及分析推理能力。
教學(xué)重點(diǎn) 三角形的內(nèi)角和是180°的規(guī)律。
教學(xué)難點(diǎn) 使學(xué)生理解三角形的內(nèi)角和是180°這一規(guī)律。
教學(xué)用具 每個學(xué)生準(zhǔn)備銳角三角形、直角三角形、鈍角三角形紙片各一張,量角器。
教學(xué)過程:
一、復(fù)習(xí)準(zhǔn)備
1.三角形按角的不同可以分成哪幾類?
2.一個平角是多少度?1個平角等于幾個直角?
3.如圖,已知∠1=35°,∠2=75°,求∠3的度數(shù)。
二、教學(xué)新課
1.投影出示一組三角形:(銳角三角形、鈍角三角形、直角三角形)。三角形有幾個角?老師指出:三角形的這三個角,就叫做三角形的'三個內(nèi)角。(板書:內(nèi)角)
2.三角形三個內(nèi)角的度數(shù)和叫做三角形的內(nèi)角和。(板書課題:三角形的內(nèi)角和)今天我們一起來研究三角形的內(nèi)角和有什么規(guī)律。
3.以小組為單位先畫4個不同類型的三角形,利用手中的工具分別計(jì)算三角形三個內(nèi)角的和各是多少度?
4.指名學(xué)生匯報(bào)各組度量和計(jì)算的結(jié)果。你有什么發(fā)現(xiàn)?
5.大家算出的三角形的內(nèi)角和都接近180°,那么,三角形的內(nèi)角和與180°究竟是怎樣的關(guān)系呢?就讓我們一起來動手實(shí)驗(yàn)研究,我們一定能弄清這個問題的。
6.剛才我們計(jì)算三角形的內(nèi)角和都是先測量每個角的度數(shù)再相加的。在量每個內(nèi)角度數(shù)時(shí)只要有一點(diǎn)誤差,內(nèi)角和就有誤差了。我們能不能換一種方法,減少度量的次數(shù)呢?
提示學(xué)生,可以把三個內(nèi)角拼成一個角,就只需測量一次了。
7.請拿出桌上的直角三角形紙片,想一想,怎樣折可以把三個角拼在一起,試一試。
8.三個角拼在一起組成了一個什么角?我們可以得出什么結(jié)論?(直角三角形的內(nèi)角和是180°)
9.拿一個銳角三角形紙片試試看,折的方法一樣。再拿鈍角三角形折折看,你發(fā)現(xiàn)了什么?(直角三角形和鈍角三角形的內(nèi)角和也是180°)
10.那么,我們能不能說所有三角形的內(nèi)角和都是180°呢?為什么?(能,因?yàn)檫@三種三角形就包括了所有三角形)11.老師板書結(jié)論:三角形的內(nèi)角和是180°。
12.一個三角形中如果知道了兩個內(nèi)角的度數(shù),你能求出另一個角是多少度嗎?怎樣求?
13.出示教材85頁做一做。讓學(xué)生試做。
14.指名匯報(bào)怎樣列式計(jì)算的。兩種方法均可。
∠2=180°-140°-25°=15°
∠2=180°(140°+25°)=15°
三、鞏固練習(xí)
1.88頁第9題
這一題是不是只知道一個角的度數(shù)?另一個角是多少度,從哪看出來的?獨(dú)立完成,集體訂正。
直角三角形中的一個銳角還可以怎樣算?
2、88頁第10題
①等腰三角形有什么特點(diǎn)?(兩底角相等)
、诹惺接(jì)算 180°-70°-70°=40°或
180°-(70°×2)=40°
2.88頁第10題
、龠B接長方形、正方形一組對角頂點(diǎn),把長方形、正方形分成兩個什么圖形?
、谝粋三角形的內(nèi)角和是180°,兩個三角形呢?
四、布置作業(yè)
《三角形的內(nèi)角和》教案6
【教學(xué)目標(biāo)】
1、利用電子白板,借助生活情景,通過“量一量”,“算一算”,“拼一拼”,“折一折”的方法,推想歸納出三角形內(nèi)角和是180°,并能應(yīng)用這一知識解決一些簡單問題。
2、經(jīng)歷猜測——驗(yàn)證——得出結(jié)論——解釋與應(yīng)用的過程,體驗(yàn)“歸納”、“轉(zhuǎn)化”等數(shù)學(xué)思想方法。
3、通過數(shù)學(xué)活動使學(xué)生獲得成功的體驗(yàn),增強(qiáng)自信心,培養(yǎng)學(xué)生的創(chuàng)新意識,探索精神和實(shí)踐能力。
【教學(xué)重、難點(diǎn)】
教學(xué)重點(diǎn):引導(dǎo)學(xué)生發(fā)現(xiàn)三角形內(nèi)角和是180°。教學(xué)難點(diǎn):用不同方法驗(yàn)證三角形的內(nèi)角和是180°。
【教學(xué)過程】
一、創(chuàng)設(shè)情景,提出問題
小游戲:猜一猜藏在信封后面的是什么三角形。(出示)
師:三角形的這三個角究竟存在什么奧秘呢,我們一起來研究研究。
【設(shè)計(jì)意圖:運(yùn)用電子白板,游戲引入,激起學(xué)生對于三角形已有知識的回憶,為下面探求新的知識作好鋪墊。創(chuàng)設(shè)疑問,引出要探討的問題,調(diào)動學(xué)生學(xué)習(xí)的興趣。】
二、動手實(shí)踐、自主探究
師:什么是內(nèi)角?內(nèi)角和是什么意思?三角形的內(nèi)角和是多少度呢?
1、從特殊入手——計(jì)算直角三角板的內(nèi)角和。
。1)師生拿出30度直角三角板
師:這是什么?是什么三角形?這個角是多少度?它的內(nèi)角和是多少度,請口算?
。2)再拿出45度直角三角板。
師:這是什么三角形?這個角是多少度?它的內(nèi)角和是多少度?
(3)師:通過剛才的計(jì)算,你有什么發(fā)現(xiàn)?
生:這兩個三角形內(nèi)角和都是180°。
【設(shè)計(jì)意圖:這一環(huán)節(jié)先讓學(xué)生在明確三角形內(nèi)角和的概念基礎(chǔ)上,先借助電子白板出示特殊三角形——“直角三角形”,讓學(xué)生初步感知三角形的內(nèi)角和,通過計(jì)算學(xué)生很容易發(fā)現(xiàn)直角三角形的內(nèi)角和是180度,為學(xué)生作進(jìn)一步猜想奠定理論基礎(chǔ)!
2、由特殊到一般——猜想驗(yàn)證,發(fā)現(xiàn)規(guī)律。
。1)提出猜想。
師:其他所有三角形的內(nèi)角和是否也是180°?
生:是、不是……
師:有的說是,有的說不是,我們的猜想對不對呢,需要驗(yàn)證。
。ǔ鍪拘〗M調(diào)查表。)
(2)驗(yàn)證猜想(生測量計(jì)算,師巡視指導(dǎo),收集回報(bào)的素材)。
師:哪個小組愿意將您們組的發(fā)現(xiàn)與大家分享一下?
生上臺展示:我們小組研究的是直角三角形(銳角三角形、鈍角三角形),我們測量它的三個角分別是度度度,內(nèi)角和是180°,我們發(fā)現(xiàn)直角三角形(銳角三角形、鈍角三角形)的內(nèi)角和是180°)
師:研究銳角三角形(銳角三角形、鈍角三角形)的小組請舉手,你們的結(jié)論和他們一樣嗎?請你們小組來談?wù)勀銈兊陌l(fā)現(xiàn)!
【設(shè)計(jì)意圖:實(shí)物投影儀在這個環(huán)節(jié)發(fā)揮了重要的作用,學(xué)生充分展示自己的想法。在初步感知的基礎(chǔ)上,教師讓學(xué)生猜測是否所有的三角形的內(nèi)角和都一樣呢?這個問題為后面的猜測和驗(yàn)證進(jìn)行鋪墊,引發(fā)思考,激發(fā)學(xué)習(xí)興趣。然后再通過算出特殊的三角形的內(nèi)角和推廣到猜測所有三角形的內(nèi)角和,引導(dǎo)學(xué)生從特殊三角形過渡到一般三角形的驗(yàn)證規(guī)律。】
。3)揭示規(guī)律。
師:通過計(jì)算我們發(fā)現(xiàn)直角三角形的內(nèi)角和是180°,銳角三角形的內(nèi)角和是——180度,鈍角三角形的內(nèi)角和也是——180度,這就驗(yàn)證了我們的猜想,F(xiàn)在我們可以說所有的三角形的內(nèi)角和是(完善課題180°)。
注:學(xué)生的匯報(bào)中可能會出現(xiàn)答案不是唯一的情況,如:180°、179°、181°等。(板書)(分別對這幾個數(shù)進(jìn)行統(tǒng)計(jì))
師:觀察這些測量結(jié)果你能發(fā)現(xiàn)什么?(三角形內(nèi)角和大約是180°左右)
。4)方法提升。
師:我們從直角三角形——銳角三角形——鈍角三角形——推出所有三角形的內(nèi)角和,這種由個別到一般的推理方法,在數(shù)學(xué)上叫歸納推理(板書)歸納推理是重要的推理方法。
【設(shè)計(jì)意圖:通過度量、比較這一活動,讓學(xué)生在實(shí)踐中充分感知三角形的內(nèi)角和大小。但由于測量本身有差異,教師并沒有直接告知三角形內(nèi)角和的結(jié)論,而是讓學(xué)生去另辟蹊徑想辦法驗(yàn)證前面的猜想,想一想有沒有別的方法來求三角形的內(nèi)角和,讓思維真正“展翅高飛”,充分調(diào)動學(xué)生學(xué)習(xí)的積極性、自主性!
3、剪拼法再次驗(yàn)證——轉(zhuǎn)化思想的運(yùn)用。
師:剛才我們通過測量發(fā)現(xiàn)了三角形的內(nèi)角和是180°,現(xiàn)在我們不用量角器測量了,你能想辦法證明三角形的內(nèi)角和是180°嗎?先思考再動手做。
生探究,師巡視指導(dǎo),收集匯報(bào)素材。(呈現(xiàn)作品——說方法——統(tǒng)計(jì)點(diǎn)評)
班內(nèi)交流,匯報(bào)撕拼法、折疊法。
師:將三角形的內(nèi)角通過剪拼、折疊,轉(zhuǎn)化成平角,你們應(yīng)用了一種重要的數(shù)學(xué)思想——轉(zhuǎn)化(板書),轉(zhuǎn)化就是將我們不會直接解決的新問題,變成已會的舊知識,進(jìn)而解決。
【設(shè)計(jì)意圖:孩子的智慧來自于動手,電子白板適時(shí)演示,讓學(xué)生通過“剪一剪,拼一拼,折一折”等操作方法,猜想、驗(yàn)證得出結(jié)論:三角形的內(nèi)角和是180°,并利用語言概括出結(jié)論,提高語言表達(dá)能力。】
4、展示——再次強(qiáng)化。
師:現(xiàn)在大家知道這幾個三角形的內(nèi)角和是多少度嗎?
師:我們可以請電腦來給我們驗(yàn)證一下。
(引入白板,通過拖動演示三角形從小到大度數(shù)的不斷變化)
結(jié)論:不論三角形的大小、形狀怎樣變化,任何三角形的內(nèi)角和都是180°。
【設(shè)計(jì)意圖:讓學(xué)生在白板上親眼觀看到拖拉出類別不同的三角形,讓學(xué)生在拖動的過程中觀察、體驗(yàn)。學(xué)生興趣盎然,學(xué)習(xí)氣氛熱烈,學(xué)生不僅感受到這3個三角形的內(nèi)角和是180°,還隨著電子白板上這個三角形的任意拖動,發(fā)現(xiàn)三角形的3個角的度數(shù)在不斷的變化,而三角形的`內(nèi)角和則始終沒有變化,仍然是180°,深刻地理解了任意三角形的內(nèi)角和都是180°。而這,恰恰就是本課的教學(xué)重點(diǎn)和難點(diǎn)。傳統(tǒng)課中不容易突破的教學(xué)重難點(diǎn)輕而易舉的攻破。抽象的知識變得直觀、具體,促進(jìn)學(xué)生知識內(nèi)化的過程!
三、鞏固應(yīng)用,內(nèi)化提高
1、介紹科學(xué)家帕斯卡(。白板出示帕斯卡的資料)
2、練習(xí)。
。1)做一做:在一個三角形中,∠1=140度,∠3=25度,求∠2的度數(shù)。
。2)求出下列三角形中各個角的度數(shù)。(書88頁第9題)
(3)、算一算(書88頁第10題):爸爸給小紅買了一個等腰三角形的風(fēng)箏。它的一個底角是70°,它的頂角是多少度?
【設(shè)計(jì)意圖:練習(xí)中使用白板的交互性,學(xué)生更愿意參與,得出結(jié)果也更有成就感。素質(zhì)教育要求我們要面向全體學(xué)生。為此,根據(jù)問題的不同難度,教學(xué)時(shí)兼顧到不同層次的學(xué)生,使每位學(xué)生都有所收獲,都有機(jī)會體會到成功的喜悅。設(shè)計(jì)練習(xí)有新意,同時(shí)也注意了坡度。既有基本練習(xí),也有發(fā)展性練習(xí),盡最大努力體現(xiàn)因材施教。】
四、課后思考、拓展延伸
同學(xué)們,數(shù)學(xué)奧妙無窮,三角形是邊數(shù)最少的封閉平面圖形,那么,四邊形五邊形六邊形(出圖示)……的內(nèi)角和是多少度,他們又有什么規(guī)律呢?有興趣的同學(xué)下課之后可繼續(xù)研究,下課。
《三角形的內(nèi)角和》教案7
【設(shè)計(jì)理念】
遵循由特殊到一般的規(guī)律進(jìn)行探究活動是這節(jié)課設(shè)計(jì)的主要特點(diǎn)之一!稊(shù)學(xué)課程標(biāo)準(zhǔn)》指出,讓學(xué)生學(xué)習(xí)有價(jià)值的數(shù)學(xué),讓學(xué)生帶著問題、帶著自己的思想、自己的思維進(jìn)入數(shù)學(xué)課堂,對于學(xué)生的數(shù)學(xué)學(xué)習(xí)有著重要作用。因此,我嘗試著將數(shù)學(xué)文本、課外預(yù)習(xí)、課堂教學(xué)三方有機(jī)整合,在質(zhì)疑、解疑、釋疑中展開教學(xué),培養(yǎng)學(xué)生提出問題、分析問題和解決問題的探究能力。
【教材分析】
三角形的內(nèi)角和是三角形的一個重要特征。本課是安排在學(xué)習(xí)三角形的概念及分類之后進(jìn)行的,它是學(xué)生以后學(xué)習(xí)多邊形的內(nèi)角和及解決其它實(shí)際問題的基礎(chǔ)。學(xué)生在掌握知識方面:已經(jīng)掌握了三角形的分類,比較熟悉平角等有關(guān)知識;能力方面:經(jīng)過三年多的學(xué)習(xí),已具備了初步的動手操作能力和主動探究能力以及合作學(xué)習(xí)的習(xí)慣。因此,教材很重視知識的探索與發(fā)現(xiàn),安排了一系列的實(shí)驗(yàn)操作活動。教材呈現(xiàn)教學(xué)內(nèi)容時(shí),不但重視體現(xiàn)知識的形成過程,而且注意留給學(xué)生充分進(jìn)行自主探索和交流的空間,為教師靈活組織教學(xué)提供了清晰的思路。概念的形成沒有直接給出結(jié)論,而是通過量、算、拼等活動,讓學(xué)生探索、實(shí)驗(yàn)、發(fā)現(xiàn)、討論交流、推理歸納出三角形的內(nèi)角和是180°。
【學(xué)情分析】
學(xué)生已經(jīng)掌握三角形特性和分類,熟悉了鈍角、銳角、平角這些角的知識,大多數(shù)學(xué)生已經(jīng)在課前通過不同的途徑知道“三角形的內(nèi)角和是180度”的結(jié)論,但不一定清楚道理,所以本課的設(shè)計(jì)意圖不在于了解,而在于驗(yàn)證,讓學(xué)生在課堂上經(jīng)歷研究問題的過程是本節(jié)課的重點(diǎn)。四年級的學(xué)生已經(jīng)初步具備了動手操作的意識和能力,并形成了一定的空間觀念,能夠在探究問題的過程中,運(yùn)用已有知識和經(jīng)驗(yàn),通過交流、比較、評價(jià)尋找解決問題的途徑和策略。
【學(xué)習(xí)目標(biāo)】
1.通過測量、剪、拼等活動發(fā)現(xiàn)、探索和發(fā)現(xiàn)“三角形內(nèi)角和是180°”。
2.學(xué)會根據(jù)“三角形內(nèi)角和是180°”這一知識求三角形中一個未知數(shù)的度數(shù)。
3.在課堂活動中培養(yǎng)學(xué)生的觀察、歸納、概括能力和初步的.空間想象力。并通過動手操作把三角形內(nèi)角和轉(zhuǎn)化為平角的探究活動,向?qū)W生滲透“轉(zhuǎn)化”數(shù)學(xué)思想。
4.使學(xué)生體驗(yàn)成功的喜悅,激發(fā)學(xué)生主動學(xué)習(xí)數(shù)學(xué)的興趣。
【教學(xué)重點(diǎn)】
探索和發(fā)現(xiàn)“三角形的內(nèi)角和是180°”。
【教學(xué)難點(diǎn)】
運(yùn)用三角形的內(nèi)角和解決實(shí)際問題。
【教學(xué)準(zhǔn)備】
教師:多媒體、剪好的不同類型的三角形。
學(xué)生:量角器、剪刀、剪好的不同類型的三角形。
【教學(xué)過程】
一、創(chuàng)設(shè)情景,引出問題
1.猜謎語。
師:同學(xué)們,你們喜歡猜謎語嗎?今天老師給你們帶來了一則謎語。請同學(xué)們讀一下(出示謎語)。
師:打一幾何圖形。猜猜看!
學(xué)生猜謎語。
根據(jù)學(xué)生的回答,出示謎底。
師:真是三角形,同學(xué)們的反應(yīng)真快!
2.復(fù)習(xí)三角形的內(nèi)容。
其實(shí),三角形我們并不陌生,它是一種特別的平面圖形。關(guān)于三角形,你們已經(jīng)掌握了哪些知識?
指名學(xué)生回答。
(當(dāng)學(xué)生回答出三角形有3個頂點(diǎn)、3條邊和3個角時(shí),請這名學(xué)生到臺上分別指出三角形的3個角,并標(biāo)出角。)
3.引出課題。
師:同學(xué)們知道的還真不少,可見你們平時(shí)學(xué)習(xí)很用功。知道嗎?其實(shí)三角形的這三個角就是三角形的三個內(nèi)角,而這三個角的度數(shù)和就是三角形的內(nèi)角和。你們知道三角形的內(nèi)角和是多少度嗎?今天這節(jié)課就讓我們一起走進(jìn)三角形內(nèi)角和,探索其中的奧秘。
。ò鍟n題:三角形的內(nèi)角和)
二、探究新知
1.討論、交流驗(yàn)證知識的方法。
師:那同學(xué)們用什么方法來研究三角形的內(nèi)角和呢?趕緊商量一下。(同桌交流)
學(xué)生匯報(bào):①用量的方法;②用拼的方法;③用折的方法...
2.操作驗(yàn)證。
師:同學(xué)們的點(diǎn)子還真多!現(xiàn)在請同學(xué)們拿出準(zhǔn)備好的三角形,
選1個自己喜歡的三角形,選擇自己喜歡的方法進(jìn)行驗(yàn)證。(或說研究)等研究完了我們再交流,發(fā)現(xiàn)了什么,好嗎?好,現(xiàn)在開始!
3.學(xué)生匯報(bào)。
師:如果你們已經(jīng)完成了,就把你的小手舉起來示意老師。老師有點(diǎn)迫不及待了,想趕緊分享一下你們研究的成果。誰先來說?
學(xué)生匯報(bào),教師適時(shí)板書。
、儆昧康姆椒ǎ
指名學(xué)生匯報(bào)度量的結(jié)果,教師板書。(指兩名學(xué)生匯報(bào))
教師白板演示測量方法,并計(jì)算和板書出結(jié)果。
教師:同樣是測量的方法,有的同學(xué)得了180,有的不是180°,為什么會出現(xiàn)這種情況?(指名學(xué)生說)
師:可能我們測量的時(shí)候會有誤差,但是同學(xué)們選擇比較精確的測量工具,使用正確的測量方法,還是可以得到精確的結(jié)果?磥磉@個辦法不能使人很信服,有沒有別的方法驗(yàn)證?
、谟闷吹姆椒
a.學(xué)生匯報(bào)拼的方法并上臺演示。
我這里也有一個鈍角三角形,請兩名同學(xué)上臺演示。
b.請大家四人小組合作,用他的方法驗(yàn)證其它三角形。
c.展示學(xué)生作品。
d.師展示。
師:我們用量、拼得到了180度,還有什么方法?
、塾谜鄣姆椒
師:還想向同學(xué)們請同學(xué)們看一看他是怎么折的(演示)。
師:剛才我們用量的方法、拼的方法和折的方法研究了銳角三角形、直角三角形和鈍角三角形內(nèi)角和,得出什么結(jié)論了?
教師根據(jù)學(xué)生板書:(任意)三角形的內(nèi)角和是180度。
、軘(shù)學(xué)文化
師:除了我們這節(jié)課大家想到的方法,還有很多方法也能驗(yàn)證三角形的內(nèi)角和是180°,到初中我們還要更嚴(yán)密的方法證明三角形的內(nèi)角和是180°。其實(shí),早在300多年前就有一位偉大的數(shù)學(xué)家,用科學(xué)的數(shù)學(xué)方法見證了任意三角形的內(nèi)角和都是180度。這位偉大的數(shù)學(xué)家就是帕斯卡(出示帕斯卡),他是法國著名的數(shù)學(xué)家、物理學(xué)家。他在12歲時(shí)發(fā)現(xiàn)了三角形內(nèi)角和定律,17時(shí)寫出了《圓錐截線論》19歲設(shè)計(jì)了第一架計(jì)算機(jī)。
三、鞏固練習(xí)
數(shù)學(xué)家發(fā)現(xiàn)了知識,今天我們也能夠總結(jié)出知識。你們棒不棒?真厲害,接下來白老師要考考你們。眼睛看好啦!
1.出示:我是小判官(對的打“√”錯的“×”。)
強(qiáng)調(diào):把兩個小三角形拼在一起,問:大三角形的內(nèi)角和是多少度?
教師:為什么不是360°?學(xué)生回答。
2.接下來我要獎勵你們一個游戲:《幫角找朋友》
3.求未知角的度數(shù)。
師:接下來,利用三角形的內(nèi)角和我們來解決一些相關(guān)的問題吧!
①出示第一個三角形,學(xué)生嘗試獨(dú)立完成,教師巡視。
教師:剛才,我們利用了三角形的什么?
、诮處煟喝绻粋都不知道,或只知道1個角,你能知道三角形各角的度數(shù)嗎?求出下面三角形各角的度數(shù)。
a.我三邊相等;b.我是等腰三角形,我的頂角是96°。c.我有一個銳角是40°。
教師:如果我們?nèi)デ笠粋三角形內(nèi)角的度數(shù)的時(shí)候,首先我們要去觀察三角形,找出它的特點(diǎn),找出它給出的已知角的度數(shù),然后再去計(jì)算三角形未知的內(nèi)角的度數(shù)。
四、拓展延伸
師:看來三角形內(nèi)角和的知識難不倒你們了,我們來一個挑戰(zhàn)題。你們敢接受挑戰(zhàn)嗎?(出示四邊形)你知道它的內(nèi)角和是多少嗎?指名生回答,并說出理由。同學(xué)們,你們能用今天學(xué)的知識算出它的內(nèi)角和嗎?
接著讓學(xué)生嘗試求5邊形和6邊形的內(nèi)角和。
小結(jié):求多邊形的內(nèi)角和,可以從一個頂點(diǎn)出發(fā),引出它的對角線,這樣就把這個多邊形分割成了N個三角形,它的內(nèi)角和就是N個180°
五、課堂總結(jié)。
師:這節(jié)課你有什么收獲?
學(xué)生自由發(fā)言。
師生交流后總結(jié):知道了三角形的內(nèi)角和是180度,根據(jù)這個規(guī)律知道可以用180°減去兩個內(nèi)角的度數(shù),求出第三個未知角的度數(shù)。
同學(xué)們,只要我們在日常的學(xué)習(xí)中,細(xì)心觀察,大膽質(zhì)疑,認(rèn)真研究,一定會有意想不到的收獲。
六、作業(yè)布置
完成教材練習(xí)十六的第1、3題。
七、板書設(shè)計(jì):
( 任意)三角形的內(nèi)角和是180°
∠1+∠2+∠3=180°
度量 剪拼 折拼
《三角形的內(nèi)角和》教案8
教學(xué)目標(biāo)
通過猜想、驗(yàn)證,了解三角形的內(nèi)角和是180度。在學(xué)習(xí)的過程中進(jìn)一步激發(fā)學(xué)生探索數(shù)學(xué)規(guī)律的興趣,初步感知計(jì)算多邊形內(nèi)角和的公式。
教學(xué)重難點(diǎn)
三角形的內(nèi)角和
課前準(zhǔn)備
電腦課件、學(xué)具卡片
教學(xué)活動
一、計(jì)算三角尺三個內(nèi)角的和。
出示三角尺中的一個,提問:誰來說說三角尺上的三個角分別是多少度?
引導(dǎo)學(xué)生說出90度、60度、30度。
出示另一個三角尺,引導(dǎo)學(xué)生分別說出三個角的度數(shù):90度、45度、45度。
提問:請同學(xué)們?nèi)芜x一個三角尺,算出他們?nèi)齻角一共多少度?
學(xué)生計(jì)算后指名回答。
師:三角尺三個角的和是180度。
二、自主探索,解決問題
提問:是不是任一個三角形三個角的和都是180度呢?請同學(xué)們在自備本上
任畫一個三角形,量出它們?nèi)齻角分別是多少度,再求出它們的和,然后小組內(nèi)交流。
學(xué)生小組活動,教師了解學(xué)生情況,個別同學(xué)加以輔導(dǎo)。
全班交流:讓學(xué)生分別說出三個角的度數(shù)以及它們的和。
提問:你發(fā)現(xiàn)了什么?
。喝魏我粋三角形三個角的和都是180度。利用三角形的這一性質(zhì),我們可以解決許多問題。
三、試一試
要求學(xué)生先計(jì)算,再用量角器量,最后比較結(jié)果是否相同?讓學(xué)生說說計(jì)算的方法。
教師說明:即使結(jié)果不完全一樣,是因?yàn)闇y量的結(jié)果存在誤差,我們還是以
計(jì)算的結(jié)果為準(zhǔn)。
四、鞏固提高
完成想想做做的題目。
第1題
學(xué)生獨(dú)立計(jì)算,交流算法。要求學(xué)生用量角器量出結(jié)果,和計(jì)算的結(jié)果想比較。
第2題
指導(dǎo)學(xué)生看圖,弄清拼成的三角形的三個內(nèi)角指的是哪三個角。計(jì)算三角形三個角的`內(nèi)角和,幫助學(xué)生進(jìn)一步理解:三角形三個內(nèi)角的和是180度。
第3題
通過操作、計(jì)算,使學(xué)生認(rèn)識到:不管三角形的大小怎樣變化,它的內(nèi)角和是不會變化的。
第4、5、6
引導(dǎo)學(xué)生運(yùn)用三角形的分類及三角形內(nèi)角和的有關(guān)知識解決有關(guān)問題,重點(diǎn)培養(yǎng)學(xué)生靈活運(yùn)用知識解決問題的能力。
《三角形的內(nèi)角和》教案9
一、教學(xué)目標(biāo):
1、理解掌握三角形內(nèi)角和是180°,并運(yùn)用這一性質(zhì)解決一些簡單的問題。
2、通過直觀操作的方法,引導(dǎo)學(xué)生探索并發(fā)現(xiàn)三角形內(nèi)角和等于180°,在實(shí)驗(yàn)活動中,體驗(yàn)探索的過程和方法。
3、在探索和發(fā)現(xiàn)三角形內(nèi)角和的過程中獲得成功的體驗(yàn)。
二、教學(xué)重、難點(diǎn):
重點(diǎn):探索并發(fā)現(xiàn)三角形內(nèi)角和等于180°。
難點(diǎn):運(yùn)用三角形內(nèi)角和等于180°的性質(zhì)解決一些實(shí)際問題。
教具:課件、三角形若干。
學(xué)具:量角器、直角三角形、銳角三角形和鈍角三角形各一個。
三、教學(xué)過程
。ㄒ唬﹦(chuàng)設(shè)情境,導(dǎo)入新課
我們已經(jīng)學(xué)過了三角形的知識,我們來復(fù)習(xí)一下,看看大屏幕,各是什么三角形?誰能說說什么是銳角三角形、直角三角形、鈍角三角形?追問:不管是什么三角形它們都有幾個角呢?這三個角都叫做三角形的內(nèi)角,而這三個內(nèi)角的和就是這個三角形的內(nèi)角和。那么誰來說一說什么是三角形的內(nèi)角和?三角形有大有小,形狀也各不相同,那么它們的內(nèi)角和有沒有什么特點(diǎn)和規(guī)律呢?我們來看一個小片段,仔細(xì)聽它們都說了什么?
教師放課件。
課件內(nèi)容說明:一個大的直角三角形說:“我的個頭大,我的內(nèi)角和一定比你們大。”一個鈍角三角形說:“我有一個鈍角,我的內(nèi)角和才是最大的)一個小的銳角三角形很委屈的樣子說“是這樣嗎?”
都聽清它們在爭論什么嗎?(它們在爭論誰的內(nèi)角和大。)誰能說一說你的想法?(學(xué)生各抒己見,是不評價(jià))果真是這樣嗎?下面我們就來研究“三角形內(nèi)角和”。
。ò鍟n題:三角形內(nèi)角和)
。ǘ┳灾魈骄,發(fā)現(xiàn)規(guī)律
1、探究三角形內(nèi)角和的特點(diǎn)。
(1)檢查作業(yè),并提出要求:
昨天老師讓每位學(xué)生都分別剪出了銳角三角形、直角三角形和鈍角三角形,并量出了每個角的度數(shù),都完成了嗎?拿出來吧,一會我們要算出三角形的內(nèi)角和填在下面的表格里。我們來看一下表格以及要求。出示小組活動記錄表。
小組活動記錄表
小組成員的姓名
三角形的形狀
每個內(nèi)角的度數(shù)
三角形內(nèi)角的和
。ㄒ螅禾钔瓯砗,請小組成員仔細(xì)觀察你發(fā)現(xiàn)了什么?)
、谛〗M合作。
會使用表格了嗎?下面我們就以小組為單位,按照要求把結(jié)果填在小組長手中的表格內(nèi)。
各組長進(jìn)行匯報(bào)。發(fā)現(xiàn)了三角形的內(nèi)角和都是180°左右。
師:實(shí)際上,三角形三個內(nèi)角和就是180°,只是因?yàn)闇y量有誤差,所以我們才得到剛才得到的數(shù)據(jù)。
2、驗(yàn)證推測。
那么同學(xué)們有沒有什么辦法知道三角形的內(nèi)角和就是180°呢?大家可以討論一下,學(xué)生可能會想到用折拼或剪拼的方法來看一看三角形的.三個角和起來是不是180°,也就是說三角形的三個角能不能拼成一個平角。師生先演示撕下三個角拼在一起是否是平角,同學(xué)們在下面操作進(jìn)行體驗(yàn),再用課件演示把三個內(nèi)角折疊在一起(這時(shí)要注意平行折,把一個頂點(diǎn)放在邊上)學(xué)生也動手試一試。
通過我們的驗(yàn)證我們可以得出三角形的內(nèi)角和是180°。
板書:(三角形內(nèi)角和等于180°。)
3、師談話:三個三角形討論的問題現(xiàn)在能解決了嗎?你現(xiàn)在想對這三個三角形說點(diǎn)什么嗎?(讓學(xué)生暢所欲言,對得出的三角形內(nèi)角和是180°做系統(tǒng)的整理。)
4、同學(xué)們還有什么疑問嗎?大家想一想我們知道了三角形內(nèi)角和是180°可以干什么呢?(知道三角形中兩個角,可以求出第三個角)
出示書28頁,試一試第3題,并講解。
說明:在直角三角形中一個銳角等于30°,求另一個銳角。
生獨(dú)立做,再訂正格式、以及強(qiáng)調(diào)不要忘記寫度。
小結(jié):同學(xué)們有沒有不明白的地方?如果沒有我們來做練習(xí)。
(三)鞏固練習(xí),拓展應(yīng)用
1、出示書29頁第一題。說明:第一幅圖是銳角三角形已知一個銳角是75°,另一個銳角是28°,求第三個銳角?第二幅圖是直角三角形已知一個銳角是35°,求另一個銳角?第三幅圖是鈍角三角形已知一個銳角是20°,另一個銳角是45°,求鈍角?
完成,并填在書上。講一講直角三角形還有什么解法。
2、出示29頁第2題。
說明:一個鈍角三角形說:我的兩個銳角之和大于90°。
一個直角三角形說:我的兩個銳角之和正好等于90°。讓學(xué)生判斷。
3、畫一畫:
出示四邊形和六邊形。運(yùn)用三角形內(nèi)角和是180°計(jì)算出各自的內(nèi)角和。你能推算出多邊形的內(nèi)角和嗎?
三角形內(nèi)角和180度是科學(xué)家帕斯卡12歲時(shí)發(fā)現(xiàn)的。我們同學(xué)還沒到12歲,看你能不能通過自己的努力也去探索和發(fā)現(xiàn)。
。ㄋ模┱n堂總結(jié)
讓學(xué)生說說在這節(jié)課上的收獲!
《三角形的內(nèi)角和》教案10
【教學(xué)目標(biāo)】
1、知識與技能:
。1)理解和掌握三角形的內(nèi)角和是180°。
(2)運(yùn)用三角形的內(nèi)角和知識解決實(shí)際問題和拓展性問題。
2、過程與方法:
。1)通過測量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個內(nèi)角的和等于180°。
。2)知道三角形兩個角的度數(shù),能求出第三個角的度數(shù)。
。3)發(fā)展學(xué)生動手操作、觀察比較和抽象概括的能力。
3、情感態(tài)度與價(jià)值觀:
讓學(xué)生體驗(yàn)數(shù)學(xué)活動的探索樂趣,通過教學(xué)中的活動體會數(shù)學(xué)的轉(zhuǎn)化思想。
【教學(xué)重、難點(diǎn)】
教學(xué)重點(diǎn):理解掌握三角形的內(nèi)角和是180°。
教學(xué)難點(diǎn):運(yùn)用三角形的'內(nèi)角和知識解決實(shí)際問題。
【教具準(zhǔn)備】
教學(xué)課件、各種三角形
【教學(xué)過程】
一、創(chuàng)設(shè)情景,引出問題
1、猜謎語:
形狀似座山,穩(wěn)定性能堅(jiān)。三竿首尾連,學(xué)問不簡單。
(打一圖形名稱)
2、猜三角形
師:老師這有1個三角形,它的一部分被智慧星給遮住了,猜猜這是什么三角形?它里面會出現(xiàn)兩個直角嗎?為什么?
3、引出課題。
師:為什么不會出現(xiàn)兩個直角?今天我們就再次走進(jìn)數(shù)學(xué)王國,探討三角形的內(nèi)角和的奧秘。(板書課題)
二、探究新知
1、三角形的內(nèi)角和
師:三角形內(nèi)角和指的是什么?
2、猜一猜。
師:這個三角形的內(nèi)角和是多少度?
3、驗(yàn)證。
讓學(xué)生用自己喜歡的方式驗(yàn)證三角形的內(nèi)角和是不是180°。
4、學(xué)生匯報(bào)。
。1)測量
師:匯報(bào)的測量結(jié)果,有的是180°,有的不是180°,為什么會出現(xiàn)這種情況?有沒有別的方法驗(yàn)證?
。2)剪拼
A、學(xué)生上臺演示。
B、請大家三人小組合作,用剪拼的方法驗(yàn)證其它三角形。
C、師演示。
(3)折拼
師:有沒有別的驗(yàn)證方法?我在電腦里收索到折的方法,請同學(xué)們看一看他是怎么折的(課件演示)。
。4)結(jié)論:三角形的內(nèi)角和是180。
。5)數(shù)學(xué)小知識。
5、鞏固知識。
。1)解決課前問題,為什么一個三角形不可能有兩個直角?一個三角形中可以有2個鈍角嗎?
(2)把兩個小三角形拼在一起,問:大三角形的內(nèi)角和是多少度。
教師:為什么不是360°?
三、解決相關(guān)問題
師:接下來,利用三角形的內(nèi)角和我們來解決一些相關(guān)的問題吧!
1、看圖,求未知角的度數(shù)。
2、判斷。
3、如果一個都不知道,或只知道1個角,你能知道三角形各角的度數(shù)嗎?
求出下面三角形各角的度數(shù)。
。1)我三邊相等。
。2)我是等腰三角形,我的頂角是96°。
。3)我有一個銳角是40°。
4、求四邊形、五邊形內(nèi)角和。
四、總結(jié)。
師:這節(jié)課你有什么收獲?
五、板書設(shè)計(jì):(略)
《三角形的內(nèi)角和》教案11
【教學(xué)目標(biāo)】
1.學(xué)生動手操作,通過量、剪、拼、折的方法,探索并發(fā)現(xiàn)"三角形內(nèi)角和等于180度"的規(guī)律。
2.在探究過程中,經(jīng)歷知識產(chǎn)生、發(fā)展和變化的過程,通過交流、比較,培養(yǎng)策略意識和初步的空間思維能力。
3.體驗(yàn)探究的過程和方法,感受思維提升的過程,激發(fā)求知欲和探索興趣。
【教學(xué)重點(diǎn)】
探究發(fā)現(xiàn)和驗(yàn)證"三角形的內(nèi)角和為180度"的規(guī)律。
【教學(xué)難點(diǎn)】
理解并掌握三角形的內(nèi)角和是180度。
【教具準(zhǔn)備】
PPT課件、三角尺、各類三角形、長方形、正方形。
【學(xué)生準(zhǔn)備】
各類三角形、長方形、正方形、量角器、剪刀等。
【教學(xué)過程】
口算訓(xùn)練(出示口算題)
訓(xùn)練學(xué)生口算的速度與正確率。
一、謎語導(dǎo)入
(出示謎語)
請畫出你猜到的圖形。誰來公布謎底?
同桌互相看一看,你們畫出的三角形一樣嗎?
誰來說說,你畫出的是什么三角形?(學(xué)生匯報(bào))
(1)銳角三角形,(銳角三角形中有幾個銳角?)
(2)直角三角形,(直角三角形中可以有兩個直角嗎?)
(3)鈍角三角形,(鈍角三角形中可以有兩個鈍角嗎?)
看來,在一個三角形中,只能有一個直角或一個鈍角,為什么不能有兩個直角或兩個鈍角呢?三角形的三個角究竟存在什么奧秘呢?這節(jié)課,我們一起來學(xué)習(xí)"三角形的內(nèi)角和。"(板書課題:三角形的內(nèi)角和)
看到這個課題,你有什么疑問嗎?
(1)什么是內(nèi)角?有沒有同學(xué)知道?
內(nèi):里面,三角形里面的角。
三角形有幾個內(nèi)角呢?請指出你畫的三角形的內(nèi)角,并分別標(biāo)上∠1、∠2、∠3.
(2)誰還有疑問?什么是內(nèi)角和?誰來解釋?(三個內(nèi)角度數(shù)的和)。
(3)大膽猜測一下,三角形的內(nèi)角和是多少度呢?
【設(shè)計(jì)意圖】
創(chuàng)設(shè)數(shù)學(xué)化的情境。學(xué)生用已經(jīng)學(xué)的三角形的特征只能解釋"不能是這樣",而不能解釋"為什么不能是這樣".這樣引入問題恰好可以利用學(xué)生的這種認(rèn)知沖突,激發(fā)學(xué)生的學(xué)習(xí)興趣。
二、探究新知
有猜想就要有驗(yàn)證,我們一起來探究用什么方法能知道三角形的內(nèi)角和呢?
1、確定研究范圍
先請大家想一想,研究三角形的內(nèi)角和,是不是應(yīng)該包括所用的三角形?
只研究你畫出的那一個三角形,行嗎?
那就隨便畫,挨個研究吧?(太麻煩了)
怎么辦?請你想個辦法吧。
分類研究:銳角三角形,直角三角形,鈍角三角形(貼圖)
2、探究三角形的內(nèi)角和
思考一下:你準(zhǔn)備用什么方法探究三角形的內(nèi)角和呢?
小組合作:從你的學(xué)具袋中,任選一個三角形,來探究三角形的內(nèi)角和是多少度?
小組匯報(bào):
(1)量一量:把三角形三個內(nèi)角的度數(shù)相加。
直接測量的方法挺好,雖然測量有誤差,但我們知道了三角形的內(nèi)角和在180°左右。究竟是不是一定就是180°呢?哪個小組還有不同的方法?
(2)拼一拼:把三角形的三個內(nèi)角剪下來,拼成了一個平角。
能想到這種剪一剪拼一拼的方法,真不簡單。三個角拼在一起,看起來像個平角,究竟是不是平角呢?誰還有別的方法?
(3)折一折:把三角形的三個角折下來,拼成了一個平角。
這種方法真了不起,能借助平角的度數(shù)來推想三角形內(nèi)角和是180°。
總結(jié):同學(xué)們動腦思考,動手操作,運(yùn)用不同的方法來驗(yàn)證三角形的內(nèi)角和。這三種方法都很好,但在操作過程中,難免會有誤差,不太有說服力。我們能不能借助學(xué)過的圖形,更科學(xué)更準(zhǔn)確的來驗(yàn)證三角形的內(nèi)角和?
3、演繹推理的方法。
正方形四個角都是直角,正方形內(nèi)角和是多少度?
你能借助正方形創(chuàng)造出三角形嗎?(對角折)
把正方形分成了兩個完全一樣的直角三角形,每個直角三角形的內(nèi)角和:360°÷2=180°
再來看看長方形:沿對角線折一折,分成了兩個完全一樣的直角三角形,內(nèi)角和:360°÷2=180°
這種方法避免了在剪拼過程中操作出現(xiàn)的誤差,
舉例驗(yàn)證,你發(fā)現(xiàn)了什么?
通過驗(yàn)證,知道了直角三角形的內(nèi)角和是180度。
你能把銳角三角形變成直角三角形嗎?
把銳角三角形沿高對折,分成了兩個直角三角形。
一個直角三角形的內(nèi)角和是180°,那么這個銳角三角形的內(nèi)角和就是180°×2=360°了,對嗎?(360-180=180°)
通過計(jì)算,我們知道了這個銳角三角形的內(nèi)角和是180°,那么所有的銳角三角形的內(nèi)角和都是180°嗎?你是怎么知道的?
通過剛才的計(jì)算,你發(fā)現(xiàn)了什么?(銳角三角形內(nèi)角和180°)
鈍角三角形的內(nèi)角和,你們會驗(yàn)證嗎?誰來說說你的想法?180×2-90-90=180°
通過驗(yàn)證,你又發(fā)現(xiàn)了什么?(鈍角三角形內(nèi)角和180°)
4、總結(jié)
通過分類驗(yàn)證,我們發(fā)現(xiàn):直角180,銳角180,鈍角180,也就是說:三角形的內(nèi)角和是180°。也驗(yàn)證了我們的猜想是正確的。(板書)
5、想一想,下面三角形的內(nèi)角和是多少度?(小--大)
你有什么新發(fā)現(xiàn)?(三角形的內(nèi)角和與它的大小,形狀沒有關(guān)系。)
【設(shè)計(jì)意圖】
為了滿足學(xué)生的探究欲望,發(fā)揮學(xué)生的主觀能動性,通過獨(dú)立探究和組內(nèi)交流,實(shí)現(xiàn)對多種方法的體驗(yàn)和感悟。學(xué)生通過小組合作的方式學(xué)到方法,分享經(jīng)驗(yàn),更重要的是領(lǐng)悟到科學(xué)研究問題的方法。就學(xué)生的發(fā)展而言,探究的過程比探究獲得的結(jié)論更有價(jià)值。
三、自主練習(xí)
1、在一個三角形中,如果想求一個角的度數(shù),至少得知道幾個角的度數(shù)呢?(2個)那我們就試一試,挑戰(zhàn)第一關(guān)。(兩道題)
2、算得真快!如果只知道一個角的度數(shù),還能求出未知角的度數(shù)嗎?挑戰(zhàn)第二關(guān)。(三道題)
3、說得真清楚,如果一個角的度數(shù)也不知道,你還能求出未知角的度數(shù)嗎?挑戰(zhàn)第三關(guān)。(一道題)
師:同學(xué)們真了不起,從知道兩個角的度數(shù),到知道一個角的度數(shù),再到一個角的度數(shù)也不知道,都能正確求出未知角的度數(shù)。
4、學(xué)無止境,課下,請你利用三角形的內(nèi)角和,探究一下四邊形、五邊形、六邊形的內(nèi)角和各是多少度?
【設(shè)計(jì)意圖】
練習(xí)由淺入深,層層遞進(jìn)。從知道兩個角的度數(shù),到知道一個角的度數(shù),再到一個角的度數(shù)也不知道,要求學(xué)生求出未知角的的.度數(shù),梯度訓(xùn)練,拓展思維。
四、課堂總結(jié)
同學(xué)們,回想一下,這節(jié)課我們學(xué)習(xí)了什么?通過這節(jié)課的學(xué)習(xí),你有哪些收獲呢?
真了不起,同學(xué)們不僅學(xué)到了知識,還掌握了學(xué)習(xí)的方法。"在數(shù)學(xué)的天地里,重要的不是我們知道什么,而是我們怎么知道的",在這節(jié)課上,重要的不是我們知道了三角形的內(nèi)角和是180°,而是我們通過猜測,一步一步驗(yàn)證,得到這個規(guī)律的過程。
課后反思
《三角形的內(nèi)角和》是五四制青島版四年級上冊第四單元的信息窗二,本節(jié)課是在學(xué)生學(xué)習(xí)了與三角形有關(guān)的概念、邊、角之間的關(guān)系的基礎(chǔ)上,讓學(xué)生動手操作,通過一系列活動得出"三角形的內(nèi)角和等于180°".
本著"學(xué)貴在思,思源于疑"的思想,這節(jié)課我不斷創(chuàng)設(shè)問題情境,讓學(xué)生去猜想、去探究、去發(fā)現(xiàn)新知識的奧妙,從而讓學(xué)生在動手操作、積極探索的活動中掌握知識,積累數(shù)學(xué)活動經(jīng)驗(yàn),發(fā)展空間觀念。"問題的提出往往比解答問題更重要",其實(shí)三角形內(nèi)角和是多少?大部分的學(xué)生已經(jīng)知道了這一知識,所以很輕松地就可以答出。但是只是"知其然而不知其所以然".
為此,我設(shè)計(jì)了大量的操作活動:畫一畫、量一量、折一折、拼一拼等,我沒有限定了具體的操作環(huán)節(jié)。在操作活動中,老師有"扶"有"放".做到了"扶"而不死,"伴"而有度,"放"而不亂。利用課件演示,更直觀的展示了活動過程,生動又形象,吸引學(xué)生的注意力。使學(xué)生感受到每種活動的特點(diǎn),這對他認(rèn)識能力的提高是有幫助的。
最后通過習(xí)題鞏固三角形內(nèi)角和知識,培養(yǎng)學(xué)生思維的廣闊性,為了強(qiáng)化學(xué)生對這節(jié)課的掌握,從知道兩個角的度數(shù),到知道一個角的度數(shù),再到一個角的度數(shù)也不知道,要求學(xué)生求出未知角的的度數(shù),層級練習(xí),步步加深,梯度訓(xùn)練。
教學(xué)是遺憾的藝術(shù)。當(dāng)然本節(jié)課的教學(xué)中,存在許多不盡如意之處:
1、讓學(xué)生養(yǎng)成良好的學(xué)具運(yùn)用習(xí)慣,特別是小組學(xué)生在合作操作時(shí),應(yīng)有效指導(dǎo),對學(xué)生及時(shí)評價(jià),激勵表揚(yáng),調(diào)動學(xué)生學(xué)習(xí)的積極性與主動性。
2、學(xué)生在介紹剪拼的方法時(shí),可以讓介紹的學(xué)生先上臺演示是如何把內(nèi)角拼在一起,這樣學(xué)生在動手操作的時(shí)候就可以節(jié)省時(shí)間。
3、在做練習(xí)時(shí),為了趕時(shí)間,題出現(xiàn)的頻率較快,留給學(xué)生計(jì)算思考的時(shí)間不足,可能只照顧到好學(xué)生的進(jìn)程,沒有關(guān)注全體學(xué)生,今后應(yīng)注意這一點(diǎn)。
教學(xué)是一門藝術(shù),上一節(jié)課容易,上好一節(jié)課談何容易,在今后的課堂教學(xué)中,只有勤學(xué)、多練,才能更好的為學(xué)生的學(xué)習(xí)和成長服務(wù),讓自己的人生舞臺綻放光彩。
《三角形的內(nèi)角和》教案12
一、教材簡介:
本微課選自北京師范大學(xué)出版社初中數(shù)學(xué)七年級下冊第四章《三角形》的第一節(jié)《認(rèn)識三角形》的內(nèi)容,學(xué)生在學(xué)習(xí)了“三角形的概念”之后,自然要想到“三角形的內(nèi)角和”,因此本節(jié)微課起著承上啟下的作用。教學(xué)內(nèi)容是《三角形內(nèi)角和》。
二、設(shè)計(jì)理念:
我在設(shè)計(jì)這一堂微課時(shí),主要從七年級學(xué)生以形象思維為主,對新事物容易產(chǎn)生興趣的特點(diǎn)出發(fā),創(chuàng)設(shè)問題情景“在以前小學(xué)學(xué)習(xí)三角形的內(nèi)角和的結(jié)論時(shí),是通過撕、拼的方法直觀得到的,你知道其中的依據(jù)嗎?”來激發(fā)學(xué)生探究的欲望。然后通過老師借助Z+Z超級畫板展示“三角形的內(nèi)角和等于180°”的動畫以及通過旋轉(zhuǎn)和平移三角形的兩個角到第三個角的方法,一方面讓學(xué)生去發(fā)現(xiàn)問題,另一方面使學(xué)生通過多角度思考、分析、說理、操作加深學(xué)生對三角形內(nèi)角和為180°的理解,從而突出和解決了本節(jié)課的重點(diǎn),同時(shí)在教學(xué)中注重在直觀操作的基礎(chǔ)上進(jìn)行簡單的推理,使學(xué)生學(xué)會用一定的方式有條理地表達(dá)推理過程。在學(xué)生探究得出三角形的內(nèi)角和等于180°之后,教師通過借助Z+Z超級畫板拖動三角形的'任意一個點(diǎn),改變?nèi)切蔚男螤睿瑒討B(tài)顯示了“三角形的內(nèi)角和”始終等于180°的數(shù)據(jù)。加深對“三角形的內(nèi)角和“的理解。最后同過練習(xí),檢測學(xué)生對“三角形的內(nèi)角和”的應(yīng)用掌握程度,拓展學(xué)生視野,提高學(xué)生認(rèn)識水平。
設(shè)計(jì)特色是力求通過Z+Z超級畫板動畫等多媒體教學(xué)手段,使抽象知識動態(tài)化,降低學(xué)生認(rèn)知難度。以問題為導(dǎo)向,引導(dǎo)學(xué)生推斷分析,鍛煉學(xué)生邏輯思維。教學(xué)過程充分體現(xiàn)出以學(xué)生為主體,教師為主導(dǎo)的特點(diǎn),啟發(fā)引導(dǎo)學(xué)生通過多角度思考、分析、說理、操作的過程中主動地去獲取知識,體驗(yàn)過程、感悟方法,以提高學(xué)生學(xué)習(xí)的有效性。
三、學(xué)情分析:
七年級的學(xué)生形象思維比較好,但空間思維比較差,注意力容易轉(zhuǎn)移,需要教師結(jié)運(yùn)用多媒體技術(shù)展示三角形內(nèi)角和,因此本節(jié)課我展示“三角形的內(nèi)角和”的動畫給學(xué)生看,將思維的可視化展示給學(xué)生,使學(xué)生能保持較大的學(xué)習(xí)興趣,從而努力培養(yǎng)學(xué)生的發(fā)現(xiàn)問題的能力、推理能力、有條理的表達(dá)能力、發(fā)展空間觀念。
四、教學(xué)目標(biāo)
知識與技能:通過觀察、操作、想象、推理“三角形內(nèi)角和等于180°”的活動過程,發(fā)展空間觀念,推理能力和有條理地表達(dá)能力。
過程與方法:通過自主探究,結(jié)合具體實(shí)例,掌握三角形三個角和等于180°。
情感、態(tài)度價(jià)值觀:在探究學(xué)習(xí)中體會數(shù)學(xué)的現(xiàn)實(shí)意義,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的信心,體驗(yàn)解決問題方法的多樣性。
五、教學(xué)重難點(diǎn)
教學(xué)重點(diǎn):三角形的內(nèi)角和。
教學(xué)難點(diǎn):三角形的內(nèi)角和。
六、教學(xué)用具
“三角形的內(nèi)角和”動畫、制作多媒體課件。
七、教學(xué)過程:
教學(xué)環(huán)節(jié)
教學(xué)內(nèi)容
教學(xué)活動
設(shè)計(jì)意圖
教師的組織和引導(dǎo)
學(xué)生活動
提出問題,自主探究
一、三角形內(nèi)角和
展示書本P81頁的做一做,提出問題:
1、在小學(xué)通過撕、拼方法得到三角形內(nèi)角和等于180°,依據(jù)是什么?
2、展示“三角形內(nèi)角和等于180°”動畫。
3、引導(dǎo)學(xué)生利用“平行線的判定與性質(zhì)”探究、推理、得出“三角形內(nèi)角和等于180°”的結(jié)論
3、利用“三角形內(nèi)角和”的動畫,拖動三角形的任意點(diǎn),用數(shù)據(jù)顯示三角形的內(nèi)角和等于180°。
閱讀課本p81頁,回憶小學(xué)通過撕、拼方法得到三角形內(nèi)角和等于180°。
觀看“三角形內(nèi)角和等于180°”動畫。
探究、想象、推理、得出結(jié)論。
觀看動畫,加深理解三角形內(nèi)角和等于180°。
根據(jù)做一做,激發(fā)學(xué)生的探究欲望。
動畫形象地呈現(xiàn)在學(xué)生眼前,直觀操作與說理結(jié)合起來。
培養(yǎng)學(xué)生的推理能力和有條理地表達(dá)能力,發(fā)展空間觀念。
效果檢測,引領(lǐng)提升
練習(xí)
展示有梯度的課堂練習(xí)。
做練習(xí)
對所學(xué)知識加以運(yùn)用和深化歸納總結(jié),深化認(rèn)知
總結(jié)拓展
總結(jié)本節(jié)知識點(diǎn)
歸納知識點(diǎn)
學(xué)會總結(jié)
板書設(shè)計(jì)
一、三角形三個內(nèi)角和等于180°
教學(xué)反思:
該微課針對我校生源不是很好的實(shí)際情況和“三角形內(nèi)角和”很難理解的特點(diǎn),面向?qū)W生,聚焦學(xué)習(xí)過程,關(guān)注個性差異,采用問題導(dǎo)學(xué)、自主探究模式,聚焦知識點(diǎn)講解,呈現(xiàn)教師如何用Z+Z超級畫板軟件引導(dǎo)學(xué)生學(xué)習(xí),學(xué)生如何在教師的引導(dǎo)下自主學(xué)習(xí)的過程,充分體現(xiàn)教師的主導(dǎo)作用和學(xué)生的主體作用;針對七年級學(xué)生以形象思維為主、好奇心強(qiáng)的特點(diǎn),充分發(fā)揮多媒體在學(xué)科中的運(yùn)用,教師展示“三角形內(nèi)角和”動畫,讓學(xué)生根據(jù)“平行線的判定和性質(zhì)”獲得“三角形內(nèi)角和等于180°”的結(jié)論,體現(xiàn)思維過程。培養(yǎng)學(xué)生的推理能力和有條理地表達(dá)能力,發(fā)展空間觀念。符合新課標(biāo)倡導(dǎo)的探究性學(xué)習(xí)的理念。事實(shí)證明,符合學(xué)生的認(rèn)知心理,達(dá)到了很好的效果。
《三角形的內(nèi)角和》教案13
教學(xué)目標(biāo):
1、通過量、剪、拼、擺等直觀操作的方法,讓學(xué)生探索并發(fā)現(xiàn)三角形內(nèi)角和等于180度。
2、在活動交流中培養(yǎng)學(xué)生合作學(xué)習(xí)的意識和能力,讓學(xué)生經(jīng)歷猜測探索總結(jié)的數(shù)學(xué)學(xué)習(xí)過程,在實(shí)驗(yàn)活動中體驗(yàn)探索的過程和方法。
3、通過運(yùn)用三角形內(nèi)角和的性質(zhì)解決一些簡單的問題,使學(xué)生體會數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,體會到數(shù)學(xué)的價(jià)值,增加學(xué)生學(xué)數(shù)學(xué)的信心和興趣。
教學(xué)重點(diǎn):
探索發(fā)現(xiàn)三角形內(nèi)角和等于180并能應(yīng)用。
教學(xué)難點(diǎn):
三角形內(nèi)角和是180的探索和驗(yàn)證。
教學(xué)過程:
一、創(chuàng)設(shè)情境,提出問題
師:大家喜歡猜謎語嗎?
生:喜歡。
師:下面請大家猜一個謎語(大屏幕出示形狀似座山,穩(wěn)定性能堅(jiān)。三竿首尾連,學(xué)問不簡單。
。ù蛞粠缀螆D形))
生:三角形。
師:三角形中都有哪些學(xué)問?
生:三角形有三條邊,三個角,具有穩(wěn)定性。
生:三角形按角分,可以分成銳角三角形、直角三角形、鈍角三角形。
生:三角形按邊分,可以分成等腰三角形,不等邊三角形,其中等腰三角形又包含了兩條邊相等的三角形和等邊三角形。
生:一個三角形中最多只能有一個直角,最多只能有一個鈍角,最少有兩個銳角。
生:三角形的內(nèi)有和是180。
生:(一臉疑惑)
師:(板書:三角形的內(nèi)角和是180),你有什么疑惑? 生:什么是內(nèi)角?
生:每個三角形的內(nèi)角和都是180嗎?
。ǜ鶕(jù)學(xué)生的問題,在三角形的內(nèi)角和是180后面加上一個?)
二、自主探索,實(shí)踐驗(yàn)證
1、理解內(nèi)角 師:什么是內(nèi)角?
生:我認(rèn)為三角形的內(nèi)角就是指三角形的三個角。
師:三角形的每個角都是三角形的內(nèi)角,每個三角形都有三個內(nèi)角。
2、理解內(nèi)角和。
師:那三角形的內(nèi)角和又是指什么?
生:我認(rèn)為三角形的內(nèi)角和就是把三角形的三個內(nèi)角的度數(shù)加起來的和。
師:為了方便,我們將三角形的每個內(nèi)角編上序號1、2、3、我們叫它1、2、3,這三個角的度數(shù)和,就是這個三角形的內(nèi)角和。
3、實(shí)踐驗(yàn)證
師:每個三角形的內(nèi)角和都是180嗎?用什么方法來驗(yàn)證呢?
生:量一量每個角的度數(shù),然后加起來看看是不是180。
師:請大家拿出課前準(zhǔn)備的三角形,親自量一量,算一算。(學(xué)生動手量一量)
師:誰愿意把你的勞動成果和大家分享一下?
生:我量的這個三角形的三個內(nèi)角的度數(shù)分別是60、60、60,加起來一共是180。
師:這位同學(xué)量的是一個銳角三角形,并且是比較特殊的三角形等邊三角形。
生:我量這個三角形的三個內(nèi)角的度數(shù)分別是45、45、90,加起來一共是180。
師:這是我們?nèi)浅咧械囊粋,也比較特殊,是一個等腰直角三角形。
生:我量的是三角尺中的另一個,三個內(nèi)角的度數(shù)分別是60、30、90,加起來一共是180 生:我量的是鈍角三角形,三個內(nèi)角的度數(shù)分別是85、60、38,加起來一共是183。
師:你發(fā)現(xiàn)了什么?
生:有的三角形的內(nèi)角和是180,而有的三角形的內(nèi)角和卻不是180。
師:看來三角形的內(nèi)角和不一定是180。
生:老師,測量會有誤差,量出來的不是很精確,那么求出來的結(jié)果也不夠精確。雖然不都是三個內(nèi)角加起來不都是180,但都接近180。
生:都接近180就能說一定是180嗎?
師:科學(xué)來不得半點(diǎn)虛假,看來這個是不能讓大家信服的。那還可以用什么方法來驗(yàn)證呢?下面請同學(xué)們小組合作,發(fā)揮小組成員的智慧,充分利用大家的學(xué)具進(jìn)行驗(yàn)證,比一比哪些組的方法富有新意,開始!
。▽W(xué)生在小組內(nèi)進(jìn)行探索驗(yàn)證。教師巡視,參與到學(xué)生的研究中)
師:請每個小組選擇一個代言人,和大家分享一下你們的智慧。
生:(邊展示邊交流)我們小組運(yùn)用了折一折的方法,把三角形的三個內(nèi)角都向內(nèi)折,三個內(nèi)角就拼成了一個平角,也就是180,所以我們小組得出三角形的內(nèi)角和是180。
師:你折的只是銳角三角形,只能證明銳角三角形的內(nèi)角和是180,直角三角形,鈍角三角形是不是也是這樣的?
生:我們小組也有折的直角三角形,鈍角三角形。
。ㄆ渌某蓡T展示不同的.三角形)
師:看這個小組的同學(xué)想問題多全面呀,不僅想到了用什么方法,還想到了用不同的三角形進(jìn)行驗(yàn)證,老師實(shí)在是佩服你們組的智慧,讓我們把掌聲送給他們!
師:哪個小組和他們的方法不一樣?
生:我們小組把三角形的三個內(nèi)角都撕了下來,拼在了一起,正好拼成了一個平角,也就是180。我們也實(shí)驗(yàn)了不同的三角形,三個內(nèi)角都可以拼成平角,所以我們小組得出結(jié)論,三角形的內(nèi)角和是180。
師:這個小組的方法簡便,易操作,很好。
生:我們小組成員是這樣想的,一個長方形有4個直角,每個直角90,那么長方形的內(nèi)角和就是360,每個長方形都可以平均分成兩個直角三角形,每個直角三角形的內(nèi)角和就是180。 師:你們小組很聰明,從長方形的內(nèi)角和聯(lián)想到直角三角形的內(nèi)角和是180,從不同的角度去思考問題,謝謝你為我們提供了這么好的方法!
4、小結(jié)
師:剛才同學(xué)們用量、折、剪、拼、計(jì)算、推理等這么多巧妙的方法得出了無論是什么樣的三角形的內(nèi)角和都是1800,你還有什么疑問嗎?
生:沒有。
師:(去掉問號)那就讓我們大聲地讀出來三角形的內(nèi)角和是1800。
三、鞏固應(yīng)用,加深理解
1、說一說每個三角形的內(nèi)角和是多少度
師:(出示一個大三角形)這個大三角形的內(nèi)角和是多少度?
生: 180
師:(出示一個小三角形)這個小三角形的內(nèi)角和是多少度?
生:180
師:(演示)把這兩個三角形拼在一起,拼成的大三角形的內(nèi)角和是多少度?
生:180
師:為什么每個三角形的內(nèi)角和是1800,而合起來還是180呢?另外那180去哪兒了?
生:把兩個三角形拼成一個大三角形,兩個直角不再是大三角形的內(nèi)角,所以少了180
師:(演示)把一個大三角形分成兩個三角形,每個三角形的內(nèi)角和是多少度?
生:180
2、求下面各角的度數(shù)
師:如果老師告訴你一個三角形的兩個角的度數(shù),你能說出第三個角的度數(shù)嗎?
(出)
生:三角形內(nèi)角和是180,在第一個三角形中,用180-75-28,A=77
生:用180-90-35,C =55。
生:第二個三角形是直角三角形,B是直角,也可以直接用90-35=55。
生:第三個三角形中,用180-20-45,B=115。
3、一個等腰三角形的風(fēng)箏,它的一個底角是70,它的頂角是多少度?
生:等腰三角形的兩個底角相等,所以用180-70-70 4、
師:三角形的內(nèi)角和在我們的生活中應(yīng)用很廣泛,老師給大家?guī)硪粋在建筑中應(yīng)用的例子。
在設(shè)計(jì)這座大橋時(shí),如果設(shè)計(jì)師將斜拉的鋼索與橋柱形成的夾角設(shè)計(jì)成了56,建筑師在造橋時(shí)怎樣才能確定鋼索與橋柱是否形成了這個角度?
生:用量角器量一量
師:量哪個角?量一量斜拉的鋼索與橋柱形成的夾角嗎?
生:橋面與橋柱形成一個直角,是90,斜拉的鋼索與橋柱形成的夾角是56,那么用180-90-56=34,就是斜拉的鋼索與橋面的夾角,所以只要讓斜拉的鋼索與橋面的夾角是34,那么斜拉的鋼索與橋柱形成的夾角就是56
師:你真是個善于觀察、善于思考的孩子,努力學(xué)習(xí),將來一定會成為一名優(yōu)秀的建筑師。
四、回顧總結(jié),拓展延伸
師:40分鐘很快就過去了,你愿意把自己的收獲與大家共同分享嗎?
生:我知道了三角形的內(nèi)角和是180。
生:無論是大三角形,還是小三角形,無論是銳角三角形,還是鈍角三角形,還是銳角三角形,內(nèi)角和都是180。
生:把一個大三角形分成兩個小三角形,每個三角形的內(nèi)角和還是180,把兩個小三角形拼成一個大三角形,大三角形的內(nèi)角和還是180。
生:我可以用撕、拼、折等方法來驗(yàn)證三角形的內(nèi)角和是180。
師:這個同學(xué)不僅學(xué)會了知識,而且學(xué)會了方法,我們只有學(xué)會了方法,才能更好地去探究更多的知識。
師:那你現(xiàn)在知道為什么一個三角形內(nèi)只能有一個直角或一個鈍角嗎?
生:兩個直角的度數(shù)之和是180,再加上一個角,三個角的度數(shù)之和超過了180,所以一個三角形中最多只能有一個直角。
生:兩個鈍角的度數(shù)之和就超過了180,再加上一個角,就更大了,所以一個三角形中最多只能有一個鈍角。
師:我們學(xué)習(xí)知識,必須知其然并知其所以然。
師:三角形中還有許許多多的學(xué)問,讓我們在以后的學(xué)習(xí)中繼續(xù)去研究。
《三角形的內(nèi)角和》教案14
教材分析
教材的小標(biāo)題為“探索與發(fā)現(xiàn)”,說明這部分內(nèi)容要求學(xué)生自主探索,并發(fā)現(xiàn)有關(guān)三角形內(nèi)角和性質(zhì)。
教材創(chuàng)設(shè)了一個有趣的問題情境,以此激發(fā)學(xué)生的興趣,引出探索活動。首先,教師應(yīng)使學(xué)生明確“內(nèi)角”的意義,然后引導(dǎo)學(xué)生探索三角形內(nèi)角和等于多少。大多數(shù)學(xué)生會想到用測量角的方法,此時(shí)就可以安排小組活動。每組同學(xué)可以畫出大小、形狀不同的若干個三角形,分別量出三個內(nèi)角的度數(shù),并求出它們的和,填寫在教材提供的表中。最后發(fā)現(xiàn),大小、形狀不同的三角形,每一個三角形內(nèi)角和都在180°左右。
三角形的內(nèi)角和是否正好等于180°呢?教材中安排了兩個活動:一是把三角形三個內(nèi)角撕下來,再拼在一起,組成一個平角,因此三角形內(nèi)角和是180°。二是把三個內(nèi)角折疊在一起,發(fā)現(xiàn)也能組成一個平角。每個活動都要使學(xué)生動手試一試,加深對三角形內(nèi)角和的認(rèn)識,體驗(yàn)三角形內(nèi)角和性質(zhì)的探索過程。
另外,教材還從兩個方面引導(dǎo)學(xué)生應(yīng)用三角形的內(nèi)角和:一是根據(jù)三角形中已知的兩個角的度數(shù),求另一個角的度數(shù);二是直角三角形里的兩個銳角和等于90°,鈍角三角形里的兩個銳角和小于90°。
學(xué)情分析
學(xué)生在前面的學(xué)習(xí)中已經(jīng)認(rèn)識了三角形的基本特征及分類,并且在四年級(上冊)教材里已經(jīng)知道了兩塊三角尺上的每一個角的度數(shù),知道了平角是180°;學(xué)生通過前幾年的學(xué)習(xí),已具備了初步的動手操作能力和主動探究能力以及合作學(xué)習(xí)的習(xí)慣,所以在學(xué)生具備這些數(shù)學(xué)知識和能力的基礎(chǔ)上,來引導(dǎo)學(xué)生探索和發(fā)現(xiàn)三角形內(nèi)角和是180°這一性質(zhì)。
要讓學(xué)生明確一個三角形分成兩個小三角形后,每個三角形內(nèi)角和還是180°,兩個小三角形拼成一個大三角形,大三角形的內(nèi)角和也是180°。
教學(xué)目標(biāo)
1、知識目標(biāo):讓學(xué)生探索與發(fā)現(xiàn)三角形的內(nèi)角和是180°,已知三角形的兩個角度,會求出第三個角度。
2、能力目標(biāo):培養(yǎng)學(xué)生動手操作和合作交流的能力,促進(jìn)掌握學(xué)習(xí)數(shù)學(xué)的方法。
3、情感目標(biāo):培養(yǎng)學(xué)生自主學(xué)習(xí)、積極探索的好習(xí)慣,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)應(yīng)用數(shù)學(xué)的興趣。
教學(xué)重點(diǎn)和難點(diǎn)
教學(xué)重點(diǎn):掌握三角形的內(nèi)角和是180°,會應(yīng)用三角形的內(nèi)角和解決實(shí)際問題。
教學(xué)難點(diǎn):讓學(xué)生經(jīng)歷探索和發(fā)現(xiàn)三角形的內(nèi)角和是180°的過程。
教學(xué)過程:
(一)、激趣導(dǎo)入:
1、認(rèn)識三角形內(nèi)角
我們已經(jīng)認(rèn)識了什么是三角形,誰能說出三角形有什么特點(diǎn)?
(三角形是由三條線段圍成的圖形,三角形有三個角,…。)
請看屏幕(課件演示三條線段圍成三角形的過程)。
三條線段圍成三角形后,在三角形內(nèi)形成了三個角,(課件分別閃爍三個角及它的弧線),我們把三角形里面的這三個角分別叫做三角
形的內(nèi)角。(這里,有必要向?qū)W生直觀介紹“內(nèi)角”。)
2、設(shè)疑激趣
現(xiàn)在有兩個三角形朋友為了一件事正在爭論,我們來幫幫它們。(播放課件)
同學(xué)們,請你們給評評理:是這樣嗎?
現(xiàn)在出現(xiàn)了兩種不同的意見,有的同學(xué)認(rèn)為大三角形的內(nèi)角和大,還有部分同學(xué)認(rèn)為兩個三角形的內(nèi)角和的度數(shù)都是一樣的。那么到底誰說得對呢?
這節(jié)課我們就一起來研究這個問題。(板書課題:三角形的內(nèi)角和)
(二)、動手操作,探究新知
1、探究特殊三角形的內(nèi)角和
師拿出兩個三角板,問:它們是什么三角形?
(直角三角形)
請大家拿出自己的兩個三角尺,在小組內(nèi)說說每一個三角尺上三個角的度數(shù),并求出這兩個直角三角形的內(nèi)角和。
。ㄓ捎趯W(xué)生在四年級(上冊)教材里已經(jīng)知道了兩塊三角尺上的每一個角的度數(shù),所以能夠很快求得每塊三角尺的3個角的和都是180°)
從剛才兩個三角形內(nèi)角和的計(jì)算中,你們發(fā)現(xiàn)了什么?
(這兩個三角形的內(nèi)角和都是180°)。
這兩個三角形都是直角三角形,并且是特殊的三角形。
2、探究一般三角形內(nèi)角和
。1).猜一猜。
猜一猜其它三角形的內(nèi)角和是多少度呢?(可能是180°)
。2).操作、驗(yàn)證一般三角形內(nèi)角和是180°。
所有三角形的內(nèi)角和究竟是不是180°,你能用什么辦法來證明,使別人相信呢?
。ǹ梢韵攘砍雒總內(nèi)角的度數(shù),再加起來。)
測量計(jì)算,是嗎?那就請四人小組共同計(jì)算吧!
老師讓每個同學(xué)都準(zhǔn)備了直角三角形、銳角三角形和鈍角三角形三種不同的三角形,并量出了每個內(nèi)角的度數(shù),下面就請同學(xué)們在小組內(nèi)每種各選一個求出它們的內(nèi)角和,把結(jié)果填在表中:
(3)小組匯報(bào)結(jié)果。
請各小組匯報(bào)探究結(jié)果
提問:你們發(fā)現(xiàn)了什么?
小結(jié):通過測量計(jì)算我們發(fā)現(xiàn)每個三角形的三個內(nèi)角和都在180°左右。
3繼續(xù)探究
。1)動手操作,驗(yàn)證猜測。
沒有得到統(tǒng)一的結(jié)果。這個辦法不能使人很信服,怎么辦?還有其它辦法嗎?請同學(xué)們動腦筋想一想,能通過動手操作來驗(yàn)證嗎?
(先小組討論,再匯報(bào)方法)
大家的辦法都很好,請你們小組合作,動手操作。
。2)學(xué)生操作,教師巡視指導(dǎo)。(3)全班交流匯報(bào)驗(yàn)證方法、結(jié)果。
學(xué)生放在投影儀上展示給大家看。(剪拼、撕拼、折拼)
我們可以得出一個怎樣的結(jié)論?(三角形的內(nèi)角和是180°)
引導(dǎo)學(xué)生通過剪拼、撕拼和折拼的方法發(fā)現(xiàn):各類三角形的三個內(nèi)角都可以拼成一個平角,使學(xué)生證實(shí)三角形內(nèi)角和確實(shí)是180°,測量計(jì)算有誤差。
5、辨析概念,透徹理解。
。ǔ鍪疽粋大三角形)它的內(nèi)角和是多少度?
。ǔ鍪疽粋很小的三角形)它的`內(nèi)角和是多少度?
一塊三角尺的內(nèi)角和180°,兩塊同樣的三角尺拼成的一個大三角形的內(nèi)角和又是多少呢?(學(xué)生有的答360°,有的180°.)
把大三角形平均分成兩份。每個小三角形的內(nèi)角和是多少度?(生有的答90°,有的180°。)
這兩道題都有兩種答案,到底哪個對?為什么?
。▽W(xué)生個個臉上露出疑問。)
大家可以在小組內(nèi)用三角尺拼一拼,也可以畫一畫,互相討論。
經(jīng)過一翻激烈的討論探究后,學(xué)生發(fā)現(xiàn):三角形不論位置、大小、形狀如何,它的內(nèi)角和總是180°
。ㄈ┬〗Y(jié)
剛才同學(xué)們用很多方法證明了無論是什么樣的三角形內(nèi)角和都是180°,現(xiàn)在讓我們用自豪的、肯定的語氣讀出我們的發(fā)現(xiàn):“三角形的內(nèi)角和是180°”。
(四)、鞏固練習(xí),拓展應(yīng)用
下面,我們就根據(jù)三角形內(nèi)角和的知識來解決一些相關(guān)的數(shù)學(xué)問題。(課件)
1、求三角形中一個未知角的度數(shù)。
。1)在三角形中,已知∠1=85°,∠2=65°,求∠3。
。2)在三角形中,已知∠1=98°,∠2=49°,求∠3。
2、判斷
。1)一個三角形的三個內(nèi)角度數(shù)是:90°、75°、25°。()
(2)一個三角形至少有兩個角是銳角。()
(3)鈍角三角形的內(nèi)角和比銳角三角形的內(nèi)角和大。()
。4)直角三角形的兩個銳角和等于90°。()
3、解決生活實(shí)際問題。
(1)爸爸給小紅買了一個等腰三角形的風(fēng)箏,它的一個底角是70°,它的頂角是多少度?
。2)交通警示牌“讓”為等邊三角形,求其中一個角的度數(shù)。
4、拓展練習(xí)。
利用三角形內(nèi)角和是180°,求出下面四邊形、六邊形的內(nèi)角和?(課件)
小組的同學(xué)討論一下,看誰能找到最佳方法。
學(xué)生匯報(bào),在圖中畫上虛線,教師課件演示。
請同學(xué)們自己在練習(xí)本上計(jì)算。
(四)、課堂總結(jié)
通過這節(jié)課的學(xué)習(xí),你有哪些收獲?
《三角形的內(nèi)角和》教案15
探索與發(fā)現(xiàn):三角形內(nèi)角和
課型
新授課
設(shè)計(jì)說明
本節(jié)課是在學(xué)生已經(jīng)掌握了鈍角、銳角、直角、平角及三角形分類的基礎(chǔ)上,讓學(xué)生通過直觀操作來認(rèn)識和學(xué)習(xí)的。
1.重視知識的探究與發(fā)現(xiàn)。
在教學(xué)中,概念的形成沒有直接給出,而是整節(jié)課都是在引導(dǎo)學(xué)生的實(shí)驗(yàn)操作、活動探究中進(jìn)行。在探究活動中,不但重視知識的形成過程,而且注意留給學(xué)生充分進(jìn)行主動探究和交流的空間,讓學(xué)生歸納出三角形內(nèi)角和等于180°。
2.重視學(xué)生的合作探究學(xué)習(xí)。
使學(xué)生能夠積極主動地參與到數(shù)學(xué)活動中,能在實(shí)踐中感知、發(fā)表自己的見解,學(xué)生感受到通過自己的努力取得成功所帶來的滿足感,同時(shí)也培養(yǎng)了學(xué)生的探究能力和創(chuàng)新能力。
課前準(zhǔn)備
教師準(zhǔn)備:PPT課件 量角器 直尺 三角尺
學(xué)生準(zhǔn)備:量角器 三角尺
教學(xué)過程
一、常識導(dǎo)入。(3分鐘)
1.介紹帕斯卡:早在300多年前有一個科學(xué)家,他在12歲時(shí)驗(yàn)證了任意三角形的內(nèi)角和都是180°,他就是法國科學(xué)家、物理學(xué)家帕斯卡。
2.導(dǎo)入新課:這節(jié)課我們也來驗(yàn)證一下三角形的內(nèi)角和。
1.傾聽教師的介紹,了解帕斯卡。
2.明確本節(jié)課的學(xué)習(xí)內(nèi)容。
1.填空。
(1)有一個角是鈍角的三角形是( )三角形;有一個角是直角的三角形是( )三角形;三個角都是銳角的三角形是( )三角形。
(2)平角=( )°
直角=( )°
周角=( )°
二、合作交流,探究新知。(18分鐘)
(一)量算法。
1.探究特殊三角形的內(nèi)角和。
(1)出示一副三角尺,引導(dǎo)學(xué)生說一說各個角的度數(shù)。
(2)引導(dǎo)學(xué)生算一算它們的內(nèi)角和各是多少度。
(3)引導(dǎo)學(xué)生得出結(jié)論。
2.探究一般三角形的內(nèi)角和。
(1)引導(dǎo)學(xué)生猜一猜其他三角形的內(nèi)角和是多少度。
(2)組織學(xué)生驗(yàn)證一般三角形的內(nèi)角和是180°。
、僖龑(dǎo)學(xué)生量出每個內(nèi)角的度數(shù),再計(jì)算三個內(nèi)角的和。
②引導(dǎo)學(xué)生分工合作,把結(jié)果填入記錄表中。
、垡龑(dǎo)學(xué)生說說自己的發(fā)現(xiàn)。
(3)引導(dǎo)學(xué)生明確由于測量有誤差,實(shí)際上三角形的內(nèi)角和是180°。
(二)剪拼法。
1.組織學(xué)生用剪拼的方法求三角形的內(nèi)角和。
2.引導(dǎo)學(xué)生總結(jié)發(fā)現(xiàn)。
3.課件演示,得出三角形的內(nèi)角和是180°的結(jié)論。
(三)折拼法。
1.引導(dǎo)學(xué)生結(jié)合剪拼法嘗試折拼法。
2.引導(dǎo)學(xué)生得出結(jié)論。
3.課件演示折拼法。
(一)1.(1)說出每個三角尺中各個角的度數(shù)。
、90°;60°;30°。
②90°;45°;45°。
(2)獨(dú)立算出每個三角尺的`內(nèi)角和。
(3)得出結(jié)論:這兩個三角尺的內(nèi)角和都是180°。
2.(1)同桌之間互相說說自己的看法。
猜測:一種是內(nèi)角和可能是180°,另一種是內(nèi)角和一定是180°。
(2)小組合作進(jìn)行探究,量一量,算一算,說一說。
三角形種類 | 每個內(nèi)角 的度數(shù) | 三個內(nèi) 角的和 | ||
銳角三角形 | 65° | 46° | 68° | 179° |
鈍角三角形 | 110° | 25° | 46° | 181° |
等腰三角形 | 70° | 55° | 55° | 180° |
等邊三角形 | 60° | 60° | 60° | 180° |
通過觀察發(fā)現(xiàn):三角形的內(nèi)角和都在180°左右。
(3)聽老師講解,明確三角形的內(nèi)角和是180°。
(二)1.把一個三角形的三個內(nèi)角剪下來,小組內(nèi)拼合。在拼合過程中要注意:頂點(diǎn)重合,三個角拼合。
2.發(fā)現(xiàn)三角形的三個內(nèi)角正好拼成了一個平角,也就是180°。
3.觀看課件演示,明確三角形的三個內(nèi)角拼成了一個平角,所以它的內(nèi)角和是180°。
(三)1.動手折一折、拼一拼。
2.得出結(jié)論:三角形的三個內(nèi)角拼在一起正好是一個平角,所以三角形的內(nèi)角和是180°。
3.觀看課件演示,再次明確三角形的內(nèi)角和是180°。
2.算一算。
在一個直角三角形中,已知一個銳角是35°,另一個銳角是多少度?
3.在能組成三角形的三個角的后面畫“√”。
(1)90°;20°;70°。 ( )
(2)100°;50°;50°。( )
(3)70°;70°;70°。( )
(4)80°;70°;30°。( )
4.猜一猜。
有一個三角形,其中一個角是20°,它可能是什么三角形?
5.已知∠1、∠2、∠3是三角形的三個內(nèi)角,請你計(jì)算出每個三角形中∠1的度數(shù)。
(1)∠2=58° ∠3=48°
(2)∠2=∠3=70°
(3)∠1=∠2=∠3
三、鞏固練習(xí)。(16分鐘)
把正確答案的序號填在括號里。
1.把兩個小三角形合成一個大三角形,這個大三角形的內(nèi)角和是( )。
A.90° B.180° C.360°
2.一個三角形中有兩個銳角,則第三個角( )。
A.也是銳角
B.一定是直角
C.一定是鈍角
D.無法確定
小組合作,選一選,明確答案。
1.明確任何一個三角形的內(nèi)角和都是180°,三角形的內(nèi)角和與三角形的大小無關(guān)。
2.通過討論,明確任何一個三角形都至少有兩個銳角,所以無法確定。
6.如下圖,在直角三角形中,已知∠2=30°,不計(jì)算,你知道∠1的度數(shù)嗎?
四、課堂總結(jié),拓展延伸。(3分鐘)
1.總結(jié)本節(jié)課的學(xué)習(xí)內(nèi)容。
2.布置課后作業(yè)。
談自己本節(jié)課的收獲。
【《三角形的內(nèi)角和》教案】相關(guān)文章:
三角形內(nèi)角和教案02-19
《三角形的內(nèi)角和》教案05-17
三角形內(nèi)角和教案3篇05-11
三角形內(nèi)角和教案9篇05-13
《三角形內(nèi)角和》數(shù)學(xué)教案02-13
三角形內(nèi)角和教案匯總8篇05-15
三角形內(nèi)角和教案范文9篇05-15