- 相關(guān)推薦
《圓錐的體積》教學(xué)反思
作為一位剛到崗的人民教師,我們要在課堂教學(xué)中快速成長(zhǎng),通過教學(xué)反思可以快速積累我們的教學(xué)經(jīng)驗(yàn),教學(xué)反思應(yīng)該怎么寫才好呢?以下是小編收集整理的《圓錐的體積》教學(xué)反思,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。
《圓錐的體積》教學(xué)反思1
就小學(xué)現(xiàn)有的知識(shí),把圓錐體積轉(zhuǎn)化為體積相等的其它物體有些困難。因此,教學(xué)圓錐體積公式采用的方法與圓柱不同,沒有采用“轉(zhuǎn)化”的思想。因而這節(jié)課首先出示例5,讓學(xué)生從圖畫直觀上感受——圓錐體的體積比等底等。就小學(xué)現(xiàn)有的知識(shí),把圓錐體積轉(zhuǎn)化為體積相等的其它物體有些困難。因此,教學(xué)圓錐體積公式采用的方法與圓柱不同,沒有采用“轉(zhuǎn)化”的思想。因而這節(jié)課首先出示例5,讓學(xué)生從圖畫直觀上感受——圓錐體的體積比等底等高的圓柱體體積小。在此直觀的.基礎(chǔ)上,讓學(xué)生猜想該圓錐的體積是圓柱的幾分之幾。當(dāng)然這里教師并不追究學(xué)生猜想的是否準(zhǔn)確,可以說1/2,1/3,或其它的分?jǐn)?shù)都可以。,關(guān)鍵在猜想的基礎(chǔ)上讓他們明白,估計(jì)的結(jié)果一定要經(jīng)過驗(yàn)證才能確認(rèn)或修正。
讓他們明白“估計(jì)——驗(yàn)證”是解決問題的一種策略。因而,在估計(jì)的基礎(chǔ)上,我再讓學(xué)生親自動(dòng)手實(shí)驗(yàn),這里除了培養(yǎng)學(xué)生的自主探究、發(fā)現(xiàn)的能力,還讓學(xué)生在操作實(shí)驗(yàn)的過程中,各種能力得到鍛煉,同時(shí)還讓學(xué)生在實(shí)驗(yàn)中感受數(shù)學(xué)的嚴(yán)密性,感受數(shù)學(xué)的內(nèi)在魅力,激發(fā)學(xué)生對(duì)數(shù)學(xué)的熱愛。學(xué)生學(xué)識(shí)的關(guān)鍵還在于會(huì)不會(huì)運(yùn)用,因而,在學(xué)生探索好后,讓學(xué)生用自己探索到的結(jié)論,解決生活中的一些實(shí)際問題,讓他們真正感受到數(shù)學(xué)的用處——生活中處處離不開數(shù)學(xué)。最后讓學(xué)生談?wù)勈斋@,鞏固這節(jié)課的重點(diǎn),加深印象。
《圓錐的體積》教學(xué)反思2
圓錐的體積是在學(xué)生認(rèn)識(shí)了圓柱與圓錐,并掌握?qǐng)A柱的體積的基礎(chǔ)上教學(xué)的。本節(jié)課我主要分兩個(gè)層次進(jìn)行教學(xué),一是推導(dǎo)圓錐體積計(jì)算公式,二是運(yùn)用公式求圓錐的體積。我在教學(xué)時(shí),主要運(yùn)用了探究式的教學(xué)方法進(jìn)行教學(xué),收到了良好的效果,現(xiàn)總結(jié)以下幾點(diǎn)做法:
一、大膽猜測(cè),培養(yǎng)猜測(cè)意識(shí)
假設(shè)和猜想是科學(xué)的天梯,是科學(xué)探究的重要一環(huán)。任何發(fā)明創(chuàng)造我想都是離不開假設(shè)和猜想的。基于這樣的認(rèn)識(shí),結(jié)合本節(jié)課教學(xué)內(nèi)容的特點(diǎn),我在教學(xué)中借助教具和學(xué)具,讓學(xué)生充分觀察“等底等高的圓柱和圓錐”后,再大膽猜想它們的體積可能會(huì)有什么樣的關(guān)系?”這樣設(shè)計(jì),事實(shí)證明不僅僅是能夠培養(yǎng)學(xué)生的猜測(cè)意識(shí),更重要的是充分調(diào)動(dòng)了所有學(xué)生的'積極性,大家探究的欲望強(qiáng)烈,為本節(jié)課的成功教學(xué)奠定了基礎(chǔ)。
二、操作驗(yàn)證,培養(yǎng)科學(xué)的實(shí)驗(yàn)觀。
數(shù)學(xué)不僅是思維科學(xué),也是實(shí)驗(yàn)科學(xué),通過觀察猜想,實(shí)驗(yàn)操作得到數(shù)學(xué)結(jié)論,這種形式也是進(jìn)行科學(xué)研究的最基本形式。在教學(xué)中,我準(zhǔn)備實(shí)驗(yàn)的用具,讓學(xué)生通過動(dòng)手做實(shí)驗(yàn)得出結(jié)論:圓錐的體積是與這個(gè)圓錐等底等高的圓柱體積的三分之一,圓柱體積是與它等底等高的圓錐體積的3倍。從而總結(jié)出圓錐體積的計(jì)算公式:V=1/3Sh。
從本課的練習(xí)環(huán)節(jié),發(fā)現(xiàn)學(xué)生對(duì)圓錐體積的計(jì)算掌握扎實(shí),這說明操作實(shí)驗(yàn)在圓錐體積公式的推導(dǎo)中顯得非常重要。同時(shí)引導(dǎo)學(xué)生用科學(xué)的態(tài)度去對(duì)待這個(gè)實(shí)驗(yàn),實(shí)事求是,認(rèn)真分析自己操作實(shí)驗(yàn)。培養(yǎng)學(xué)生科學(xué)實(shí)驗(yàn)觀。
讓每個(gè)學(xué)生都經(jīng)歷了“猜想---實(shí)驗(yàn)---發(fā)現(xiàn)”的自主探究學(xué)習(xí)的過程。學(xué)生獲得的不僅是鮮活的數(shù)學(xué)知識(shí),獲得更多的是科學(xué)探究的學(xué)習(xí)方法和研究問題的方法,孩子們體驗(yàn)到探究數(shù)學(xué)的樂趣。
《圓錐的體積》教學(xué)反思3
圓錐的體積是圓柱體積的延伸,所以再學(xué)生了解圓柱體積計(jì)算公式以后,我有意識(shí)地讓學(xué)生來解決圓錐的體積,有的同學(xué)說圓錐的體積公式是V=sh,也有的同學(xué)說不是V=sh,而是V=sh÷3,當(dāng)我問及為什么是V=sh÷3時(shí),這位同學(xué)說,是書上是這樣說的。我知道這位同學(xué)在老師講新課之前,他已提前預(yù)習(xí)了。接著我把提前準(zhǔn)備好的兩個(gè)學(xué)具擺在學(xué)生面前,找人上來操作,讓學(xué)生從實(shí)際操作中驗(yàn)證圓錐的體積公式到底是V=sh,還是V=sh÷3。因?yàn)閿?shù)學(xué)由于語言的嚴(yán)謹(jǐn)性,我說“圓錐的體積是圓柱體積的1/3”這句話是否正確。有不少同學(xué)通過剛才的試驗(yàn),絕大多數(shù)同學(xué)都說這句話是對(duì)的。然而也有極少數(shù)同學(xué)認(rèn)為這句話不夠嚴(yán)謹(jǐn),還應(yīng)該加上“當(dāng)圓錐與圓柱等底、等高時(shí),圓錐的體積才是圓柱體積的1/3.”通過辨析,我讓學(xué)生不僅明白了圓錐體積公式的.推導(dǎo)過程,還讓學(xué)生明白圓錐體積公式與圓柱體積公式之間的內(nèi)在聯(lián)系。
一節(jié)好的數(shù)學(xué)課不是老師教出來的,而是學(xué)生通過試驗(yàn)總結(jié)、歸納、體驗(yàn),通過活動(dòng)“做”出來的。
《圓錐的體積》教學(xué)反思4
圓錐的體積是在學(xué)習(xí)了圓錐的認(rèn)識(shí)的基礎(chǔ)上進(jìn)行教學(xué)的。
這節(jié)課我是這樣設(shè)計(jì)的:第一部分,復(fù)習(xí)圓錐的特征和圓柱的體積=底面積×高。反思:復(fù)習(xí)舊知識(shí)之間的聯(lián)系,便于運(yùn)用已學(xué)知識(shí)推動(dòng)新知識(shí)的學(xué)習(xí),為學(xué)習(xí)新知識(shí)做準(zhǔn)備。
第二部分,便于圓柱體積的計(jì)算公式,先讓學(xué)生用轉(zhuǎn)化的思想大膽猜測(cè),能否把體積計(jì)算方法轉(zhuǎn)化成已學(xué)過的立體圖形來推導(dǎo)圓錐體積公式呢?學(xué)生猜測(cè)之后,讓學(xué)生拿出手中等底等高的圓柱體,然后同桌討論得出結(jié)論,全班交流。再進(jìn)行第二次實(shí)驗(yàn),同桌交換圓柱或圓錐倒進(jìn)沙子之后,同桌討論,全班交流,老師引導(dǎo)學(xué)生兩次實(shí)驗(yàn)的結(jié)論有什么不同,經(jīng)過學(xué)生的討論,師生歸納出:圓錐的體積等于等底等高的圓柱體積的三分之一。并強(qiáng)調(diào)V=3SH的前提條件是等底等高。
反思:這一環(huán)節(jié)讓學(xué)生用轉(zhuǎn)化的思想猜測(cè),激發(fā)學(xué)生的學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)生的探究欲望。緊接著讓學(xué)生兩次動(dòng)手實(shí)驗(yàn),親自體驗(yàn)知識(shí)的探究過程。符合小學(xué)生的`認(rèn)知規(guī)律,便于學(xué)生主動(dòng)地獲取知識(shí),掌握正確的學(xué)習(xí)方法。通過實(shí)驗(yàn),學(xué)生參與了知識(shí)的形成過程,得出了只有在等底等高的情況下圓錐的體積是圓柱的三分之一,否則這個(gè)結(jié)論不成立。
全課反思:英國(guó)教育家思賓塞說過:“在教育中應(yīng)該盡量鼓勵(lì)個(gè)人發(fā)展的過程,應(yīng)該引導(dǎo)兒童自己進(jìn)行探究,自己去推理,給他們講的應(yīng)該盡量少,而引導(dǎo)他們?nèi)グl(fā)現(xiàn)的應(yīng)該盡量多,這樣教師在教學(xué)中才能真正由重結(jié)果向重過程轉(zhuǎn)變,成為學(xué)生的組織者、引導(dǎo)者與合作者”。因此,這節(jié)課,我引導(dǎo)學(xué)生進(jìn)行實(shí)驗(yàn),放手讓他們動(dòng)手操作,在操作的過程中得出結(jié)論,突破教學(xué)難點(diǎn),理解圓錐的體積計(jì)算方法?粗⒆觽兟牭嚼蠋煹姆Q贊,他們那開心的笑臉,我想:只有讓孩子們成為學(xué)習(xí)的主人,老師只做引導(dǎo)者和合作者,引導(dǎo)得當(dāng),合作愉快時(shí),那我們就真正起到了教書育人的作用,還有誰不想學(xué)習(xí)數(shù)學(xué)這門有意義的課程呢? 1
《圓錐的體積》教學(xué)反思5
六年級(jí)的學(xué)生對(duì)立體圖形已經(jīng)有了初步的認(rèn)識(shí),因此,在教學(xué)中,我借助圓錐體和圓柱體的聯(lián)系和區(qū)別,引出圓錐體的特征,進(jìn)而分散了難點(diǎn)。在講授體積公式時(shí),我設(shè)計(jì)的實(shí)驗(yàn)環(huán)節(jié),把學(xué)習(xí)的主動(dòng)權(quán)交給了學(xué)生,學(xué)生就可以既動(dòng)手又動(dòng)腦,通過自己的努力總結(jié)出圓錐體的體積公式,在學(xué)習(xí)中體會(huì)到成功的'喜悅。
建構(gòu)主義認(rèn)為,學(xué)生的學(xué)習(xí)不是由教師向?qū)W生的單向知識(shí)傳遞,而是學(xué)生建構(gòu)自己知識(shí)的過程。學(xué)生不是被動(dòng)的信息接受者,而是一個(gè)主動(dòng)探究、發(fā)現(xiàn)知識(shí)的研究者;谝陨系恼J(rèn)識(shí),我很注重讓學(xué)生自主學(xué)習(xí),通過動(dòng)手制作圓錐體,培養(yǎng)學(xué)生的空間概念,自主探究圓錐體的計(jì)算方法,提高解決問題的能力。
這節(jié)課為學(xué)生提供了具體的實(shí)踐活動(dòng),創(chuàng)設(shè)了引導(dǎo)學(xué)生探索、操作和思考的情境,把教師變成“一位顧問”,“一位交換意見的參與者”,“一位幫助發(fā)現(xiàn)矛盾論點(diǎn)、而不是拿出現(xiàn)成真理的人”。這節(jié)課把學(xué)生推到探究新知的“第一線”,讓他們自己動(dòng)手、動(dòng)口、動(dòng)腦,主動(dòng)思考問題,并在探究新知的過程中,暴露感知的矛盾和差異,把他們弄不懂的地方、錯(cuò)誤的地方都擺在桌面上,再引導(dǎo)他們通過獨(dú)立思考,摒棄錯(cuò)誤,發(fā)現(xiàn)真理,實(shí)現(xiàn)由感性認(rèn)識(shí)到理性認(rèn)識(shí)的轉(zhuǎn)化。這樣,通過活動(dòng),讓學(xué)生自己發(fā)現(xiàn)要學(xué)習(xí)的東西,能夠積極地被同化,因而容易得到更深刻的理解。整節(jié)課大部分時(shí)間都是學(xué)生在操作,有獨(dú)立的思考,有小組的合作學(xué)習(xí),有猜想,有驗(yàn)證,有觀察,有分析,有想像,使學(xué)生在盡可能大的活動(dòng)空間中切實(shí)體驗(yàn)到數(shù)學(xué)對(duì)解決實(shí)際問題是有用的,讓學(xué)生在探究的氛圍中自主地學(xué)習(xí)知識(shí),發(fā)現(xiàn)規(guī)律,實(shí)際應(yīng)用,從而獲得成功的體驗(yàn)。
《圓錐的體積》教學(xué)反思6
對(duì)于《圓錐體積》的教學(xué),我前些年按傳統(tǒng)的教法:用空心圓柱、圓錐裝沙的實(shí)驗(yàn),得出圓錐體積的計(jì)算公式,的確有不妥之處,其一用“容積”偷換“體積”的概念,淡化了學(xué)生對(duì)“體積”的理解。其二在實(shí)驗(yàn)中,把“容積”看作近似地等于“體積”有失科學(xué)的嚴(yán)密性,對(duì)培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)?科學(xué)態(tài)度不利。由于自己的守舊,一直沒能突破,沒想到今日的突破收到意想不到的效果。也引發(fā)我的進(jìn)一步思考:
1、在日常的教學(xué)中,我們教師常常提醒學(xué)生,學(xué)習(xí)不能死守書本、不知變化、人云我云,要不拘泥、不守舊。那么我們教師自己更應(yīng)該打破條條框框、突破教材、創(chuàng)造性的靈活地使用教材。
2、陶行知先生倡導(dǎo)“手腦聯(lián)盟”,他說“人生兩個(gè)寶,雙手和大腦”就是要學(xué)生手腦并用。在小學(xué)數(shù)學(xué)教學(xué)中,如果我們教師能給學(xué)生創(chuàng)造人人參與,既動(dòng)手又動(dòng)腦的情景,就能最大限度的激發(fā)學(xué)生的學(xué)習(xí)興趣,激發(fā)學(xué)生的創(chuàng)新思維。讓不同的學(xué)生在活動(dòng)中得到不同的發(fā)展。
3、實(shí)驗(yàn)后的交流是培養(yǎng)學(xué)生思維的有力的催化劑。在交流中,學(xué)生通過比較、思考,加深了對(duì)公式的理解,不僅理解了圓柱體和圓錐體之間的關(guān)系,而且培養(yǎng)了學(xué)生的思維能力、表達(dá)能力、概括能力。
總之,我們教師只有在教學(xué)活動(dòng)中,努力創(chuàng)造條件,讓學(xué)生主動(dòng)參與、發(fā)現(xiàn)和揭示數(shù)學(xué)原理和方法,我們的數(shù)學(xué)課堂就一定能生成更多的精彩!
《圓錐的體積》教學(xué)反思7
以前教學(xué)圓錐的體積時(shí),多是先由教師演示等底等高情況下的圓柱體積的三分之一正好是圓錐的體積,再讓學(xué)生驗(yàn)證,最后教師通過對(duì)比實(shí)驗(yàn)說明不等底等高的差異,但收到的效果不佳。
學(xué)生對(duì)“等底等高”這一重要條件掌握并不牢固,理解很模糊。為了讓學(xué)生理解“等底等高”是判斷圓錐的體積是圓柱體積的三分之一的前提條件,我在六年級(jí)(6)班設(shè)計(jì)了這樣的教學(xué)片斷:讓學(xué)生自選空?qǐng)A柱和圓錐,研究圓柱和圓錐體積之間的關(guān)系,學(xué)生通過動(dòng)手操作,得出的結(jié)論與書上的結(jié)論有很大的差異,有三分之一、四分之一、二分之一的。
思維也出現(xiàn)了激烈的碰撞。這時(shí),我沒有評(píng)判結(jié)果,而是讓學(xué)生經(jīng)歷一番觀察、發(fā)現(xiàn)、合作、創(chuàng)新的過程,得出圓錐體積等于和它等底等高圓柱體積的.三分之一。這樣讓學(xué)生置身于看似混亂無序的實(shí)踐中,增加對(duì)實(shí)驗(yàn)條件的辨別及信息的批判。既圓滿地推導(dǎo)出了圓錐的體積公式,又促進(jìn)了學(xué)生實(shí)踐能力和批判意識(shí)的發(fā)展。而這些目標(biāo)的實(shí)現(xiàn),完全是靈活機(jī)智地利用“錯(cuò)誤”這一資源所產(chǎn)生的效果。
在平時(shí)的課堂教學(xué)中,我們要善于利用“錯(cuò)誤”這一資源,讓學(xué)生思考問題,讓他們?nèi)捉?jīng)碰壁,終于找到解決問題的方法。把思考問題的實(shí)際過程展現(xiàn)給學(xué)生,讓學(xué)生經(jīng)歷思維的碰撞。這樣做實(shí)際上是非常富于啟發(fā)性的。學(xué)生做數(shù)學(xué)題不僅要學(xué)會(huì)這道題的解法,而且更要懂得這個(gè)解法的來歷。
教學(xué)不僅僅是告訴,更需要經(jīng)歷。真正關(guān)注學(xué)生學(xué)習(xí)的過程,有效利用“錯(cuò)誤”這一資源,勇于、樂于為學(xué)生創(chuàng)造時(shí)機(jī),幫助他們真正理解和掌握數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。這樣,我們的課堂才是學(xué)生成長(zhǎng)和成功的樂園!
《圓錐的體積》教學(xué)反思8
本節(jié)課在學(xué)習(xí)圓柱的體積的基礎(chǔ)上,再學(xué)習(xí)圓錐的體積,學(xué)生感到非常簡(jiǎn)單易懂,因此學(xué)起來并不感到困難。但教學(xué)過后,仍感到有許多不盡人意之處,當(dāng)然也有許多收獲。
一、收獲
1、是在教學(xué)新課時(shí),沒有像傳統(tǒng)教學(xué)那樣,直接拿出等底等高的圓柱和圓錐容器的教具,讓學(xué)生觀察倒沙實(shí)驗(yàn),而是通過師生交流、問答、猜想等形式,調(diào)動(dòng)學(xué)生的積極性,激發(fā)學(xué)生強(qiáng)烈的探究欲望,學(xué)生迫切希望通過實(shí)驗(yàn)來證實(shí)自己的猜想,所以做起實(shí)驗(yàn)就興趣盎然;
2、是在實(shí)驗(yàn)時(shí),讓學(xué)生小組合作親自動(dòng)手實(shí)驗(yàn),以實(shí)驗(yàn)要求為主線,即動(dòng)手操作,又動(dòng)腦思考,努力探索圓錐體積的計(jì)算方法。這樣的學(xué)習(xí),學(xué)生學(xué)的活,記得牢,即發(fā)揮教師的主導(dǎo)作用,又體現(xiàn)了學(xué)生的主體地位。學(xué)生在學(xué)習(xí)的過程中,始終是一個(gè)探索者、研究者、發(fā)現(xiàn)者,并獲得了富有成效的學(xué)習(xí)體驗(yàn)。
3、探究圓錐體積計(jì)算方法的學(xué)習(xí)過程,學(xué)生可以不再是實(shí)驗(yàn)演示的被動(dòng)的觀看者,而是參與操作的主動(dòng)探索者,真正成為學(xué)習(xí)的主人。在整個(gè)學(xué)習(xí)過程中,學(xué)生獲得的'不僅是新活的數(shù)學(xué)知識(shí),同時(shí)也獲得了更多的是探究學(xué)習(xí)的科學(xué)方法,探究成功的喜悅以及探究失敗的深刻反思,在這樣的學(xué)習(xí)中,學(xué)生會(huì)逐步變的有思想、會(huì)思考、會(huì)逐漸發(fā)現(xiàn)自身的價(jià)值。
4、每個(gè)學(xué)生都經(jīng)歷“猜想---設(shè)計(jì)實(shí)驗(yàn)驗(yàn)證---發(fā)現(xiàn)算法”的自主探究學(xué)習(xí)的過程,在教師適當(dāng)?shù)囊龑?dǎo)下給于學(xué)生根據(jù)自己的設(shè)想自由探究等底等高的圓錐體和圓柱體體積之間的關(guān)系,圓錐體體積的計(jì)算方法。讓每個(gè)學(xué)生都經(jīng)歷一次探究學(xué)習(xí)的過程。
二、不足:
1、許多學(xué)生在計(jì)算過程中常忘記除以3,需要加強(qiáng)練習(xí)。
2、許多學(xué)生在計(jì)算中出現(xiàn)錯(cuò)誤,計(jì)算能力不過關(guān),口算也不過關(guān),導(dǎo)致計(jì)算失敗。
3、在學(xué)生進(jìn)行倒沙實(shí)驗(yàn)時(shí),應(yīng)該事先讓學(xué)生準(zhǔn)備好充分的學(xué)具,比如,準(zhǔn)備一個(gè)圓柱,然后做一個(gè)和圓柱等底等高的圓錐,在做一個(gè)等底不等高的圓錐或者等高不等底的,這樣學(xué)生就比較明顯的看出與圓柱等底等高的圓錐的體積是圓柱體積的三分之一。
4、一節(jié)好課在教學(xué)時(shí)要層次清楚,步步深入,重點(diǎn)突出。應(yīng)注意激發(fā)學(xué)生的求知欲。要有全體學(xué)生的積極參與,突出學(xué)生的主體作用。我在這幾個(gè)方面都還要加強(qiáng)。
《圓錐的體積》教學(xué)反思9
讓學(xué)生真正成為活動(dòng)的主動(dòng)者,才能讓學(xué)生真正的感受自己是學(xué)習(xí)的主人。在圖形的教學(xué)中,根據(jù)學(xué)習(xí)內(nèi)容的特點(diǎn),注重操作,注重實(shí)踐,可以讓教學(xué)達(dá)到最高效。
《圓錐》這節(jié)課,其教學(xué)目標(biāo)是:
1)、認(rèn)識(shí)圓錐,了解圓錐的底面、側(cè)面和高;
2)、掌握?qǐng)A錐高的測(cè)量方法;
3)、圓錐體積公式的推導(dǎo);
4)、通過例一例二使學(xué)生會(huì)應(yīng)用圓錐公式進(jìn)行簡(jiǎn)單的計(jì)算。
教學(xué)中,學(xué)生通過實(shí)際觸摸,動(dòng)手測(cè)量、探索推導(dǎo)等活動(dòng),前三個(gè)教學(xué)目標(biāo)在輕松快樂的氛圍中順利完成。在公式應(yīng)用這個(gè)環(huán)節(jié),考慮到學(xué)生已經(jīng)預(yù)習(xí)過例題,就把例二教學(xué)做了改動(dòng)給出一圓錐形麥堆,底面直徑是20分米,高是14分米,每立方米小麥重0.375千克,求這堆小麥重多少千克?讓學(xué)生自主練習(xí),本以為應(yīng)用公式很快就能解決的一個(gè)問題,可學(xué)生算了好長(zhǎng)時(shí)間還沒有完成。原來我在改動(dòng)數(shù)字時(shí)沒有考慮到圓錐體積公式的1/3和3。14給出的'直徑和高與1/3都不能約分,使本應(yīng)該鞏固公式應(yīng)用的目標(biāo)辯詞了復(fù)雜的小數(shù)計(jì)算,浪費(fèi)了大量的時(shí)間,課后習(xí)題沒有處理完就匆匆結(jié)束了這節(jié)課。課后反思數(shù)學(xué)既活又嚴(yán)謹(jǐn),看似一個(gè)簡(jiǎn)單數(shù)字的出示也要付出周密的策劃。一節(jié)簡(jiǎn)單流暢的好課,并不是隨手拈來的,只要用心的去思考,統(tǒng)籌安排,關(guān)注到每個(gè)細(xì)節(jié)才能得到。
教學(xué)需要學(xué)習(xí),教學(xué)更需要反思,在反思中進(jìn)步,在反思中提高。
《圓錐的體積》教學(xué)反思10
圓錐的體積是在學(xué)生直觀認(rèn)識(shí)圓錐的特征,會(huì)算圓的面積,以及長(zhǎng)方體、正方體、圓柱體的體積的基礎(chǔ)上安排教學(xué)的。因此,我有針對(duì)性地設(shè)計(jì)、制作了本節(jié)課的輔助教學(xué)課件,既突出重點(diǎn)、突破難點(diǎn),又激發(fā)學(xué)生的學(xué)習(xí)興趣,優(yōu)化教學(xué)過程,提高課堂教學(xué)質(zhì)量。
1、復(fù)習(xí)遷移,做好鋪墊
由于圓錐體的體積是在學(xué)生學(xué)過圓柱體的體積的基礎(chǔ)上安排教學(xué)的,為了讓學(xué)生回憶圓柱體的體積計(jì)算公式,以便為知識(shí)的遷移和新知識(shí)的學(xué)習(xí)做好鋪墊,我制作了一張圖文并茂的圖文片向?qū)W生展示了一個(gè)圓柱體圖形,并在圖形下面用醒目的文字向?qū)W生提出問題:這是什么形體?它的體積應(yīng)怎樣計(jì)算?這樣一張集文字、圖形、聲音于一體的圖文片,很容易引起學(xué)生注意,營(yíng)造學(xué)習(xí)氣氛。
2、創(chuàng)設(shè)情境,引入新知
數(shù)學(xué)來源于生活,我取材于生活以創(chuàng)設(shè)情境,使教學(xué)過程與生活實(shí)際密聯(lián)系起來,我制作了一張圖文并茂的圖文片向?qū)W生展示了曬谷場(chǎng)上一堆圓錐形的谷子,并在顯眼的位置向?qū)W生巧設(shè)問題:這堆谷成什么形體?你們能求出這堆谷的體積嗎?這樣,激發(fā)了學(xué)生的求知欲望,把學(xué)生引入到新課探索的活動(dòng)中。
3、實(shí)驗(yàn)操作,推導(dǎo)公式
圓錐體積的推導(dǎo),是本節(jié)課的教學(xué)難點(diǎn),為了讓學(xué)生直觀感知圓錐的體積與它等底等高的圓柱的體積的關(guān)系。首先讓學(xué)生用工具做實(shí)驗(yàn),初步感知,再呈現(xiàn)我制作的圖文片向?qū)W生演示:用圓錐裝滿水倒入和它等底等高的圓柱里的過程。并在動(dòng)畫下面巧設(shè)問題:用圓錐裝滿水倒入和它等底等高的空?qǐng)A柱里,倒幾次正好倒?jié)M?每次水的高度是圓柱高度的幾分之幾?有層次的教學(xué)設(shè)計(jì),豐富多彩的教學(xué)活動(dòng),充分體現(xiàn)以教師為主導(dǎo),以學(xué)生為主體的教與學(xué)的雙邊活動(dòng)。學(xué)生通過認(rèn)真操作實(shí)驗(yàn),觀察思考,都明白了圓錐的體積等于和它等底等高的圓柱體積的1/3,從而推導(dǎo)出圓錐體積的計(jì)算公式。
4、自學(xué)嘗試,解惑答疑
為了提高學(xué)生解決實(shí)際問題的能力,我把課本上的例1制成一張圖文片,配上悠閑的樂曲,讓學(xué)生嘗試解答。試做時(shí),我則進(jìn)行巡視,如有問題,個(gè)別輔導(dǎo),接著指名回答。這樣,能夠把較多的時(shí)間留給學(xué)生,培養(yǎng)學(xué)生的自學(xué)能力,使他們從中體驗(yàn)到學(xué)習(xí)的成功的樂趣。
圓錐的體積教學(xué)反思
本節(jié)課《圓錐的體積》以談話法、實(shí)驗(yàn)法為主,討論法、練習(xí)法為輔,實(shí)現(xiàn)教學(xué)目標(biāo)。教學(xué)中,既充分發(fā)揮學(xué)生的主體作用,調(diào)動(dòng)學(xué)生積極主動(dòng)地參與教學(xué)的全過程。小學(xué)階段學(xué)習(xí)的幾何知識(shí)是直觀幾何。小學(xué)生學(xué)習(xí)幾何知識(shí)不是靠嚴(yán)格的論證,而主要是通過觀察、操作。根據(jù)課題的特點(diǎn),主要采取讓學(xué)生做實(shí)驗(yàn)的方法主動(dòng)獲取知識(shí),而且在教學(xué)中我注重如何有效的引導(dǎo)學(xué)生探究。
例如,在上課開始,我是讓學(xué)生回憶圓柱體積公式的推導(dǎo)過程,
讓學(xué)生猜測(cè)圓錐的體積也可以借助我們已經(jīng)學(xué)過的圖形來驗(yàn)證,培養(yǎng)學(xué)生的遷移類推能力。到學(xué)生猜測(cè)出用圓柱的體積來幫助研究圓錐時(shí),再進(jìn)一步讓學(xué)生猜測(cè)圓柱與圓錐之間的關(guān)系,激起學(xué)生的學(xué)習(xí)興趣,然后馬上讓學(xué)生自己以小組為單位去驗(yàn)證自己的猜測(cè)是否正確,讓每個(gè)學(xué)生都經(jīng)歷一次探究學(xué)習(xí)的過程。每個(gè)學(xué)生都經(jīng)歷了“猜想估計(jì)---設(shè)計(jì)實(shí)驗(yàn)驗(yàn)證---發(fā)現(xiàn)算法”的自主探究學(xué)習(xí)的過程,按自己的設(shè)想自由探究等底等高的圓錐體和圓柱體體積之間的關(guān)系,圓錐體體積的計(jì)算方法。
在探究圓錐體積計(jì)算方法的學(xué)習(xí)過程中,學(xué)生不再是實(shí)驗(yàn)演示的被動(dòng)的觀看者,而是參與操作的主動(dòng)探索者,真正成為學(xué)習(xí)的主人。在整個(gè)學(xué)習(xí)過程中,學(xué)生獲得的`不僅是新活的數(shù)學(xué)知識(shí),獲得更多的是探究學(xué)習(xí)的科學(xué)方法,探究成功的喜悅以及探究失敗的深刻反思,在這樣的學(xué)習(xí)中,學(xué)生會(huì)逐步變的有思想、會(huì)思考、會(huì)逐漸發(fā)現(xiàn)自身的價(jià)值。而且在探究出圓錐體積公式的基礎(chǔ)上,再讓他們想辦法計(jì)算出他們小組實(shí)驗(yàn)用的圓錐的體積,又一次給了學(xué)生探究的空間,使他們對(duì)不光能得出圓錐的體積公式,而且知道怎么應(yīng)用它。
充分發(fā)揮了學(xué)生的個(gè)性潛能。在學(xué)習(xí)中充分發(fā)揮學(xué)生的潛能,讓他們按自己的觀察進(jìn)行猜測(cè)估計(jì),按自己的設(shè)想操作學(xué)習(xí),對(duì)自己學(xué)習(xí)情況進(jìn)行總結(jié),反思,在全體學(xué)生思維火花的相互碰撞中,出現(xiàn)了驗(yàn)證等底等高的圓錐體和圓柱體體積的方法。涌現(xiàn)出了對(duì)圓錐體體積計(jì)算公式中“1/3”的不同理解,實(shí)現(xiàn)了學(xué)習(xí)策略的多樣化,豐富了學(xué)生的學(xué)習(xí)資源。
《圓錐的體積》教學(xué)反思11
優(yōu)點(diǎn):
教學(xué)“圓錐的體積”一課,重點(diǎn)是體積公式的推導(dǎo)。公式導(dǎo)出后,如何進(jìn)行計(jì)算應(yīng)用。我讓每個(gè)學(xué)生都經(jīng)歷“猜想估計(jì)———設(shè)計(jì)實(shí)驗(yàn)驗(yàn)證———發(fā)現(xiàn)算法”的自主探究學(xué)習(xí)的過程,適當(dāng)?shù)囊龑?dǎo)學(xué)生根據(jù)自己的設(shè)想探究等底等高的圓錐體和圓柱體體積之間的關(guān)系,圓錐體體積是圓柱體體積的三分之一,從而推出圓錐的.體積公式——V=1/3Sh,這樣,就有一種水到渠成的感覺。然后,利用公式解決生活中的實(shí)際問題,加深學(xué)生印象。
不足:
1、學(xué)生對(duì)公式推導(dǎo)過程理解有困難,對(duì)圓錐體體積計(jì)算公式中“1/3”的理解不深入,雖然學(xué)生的學(xué)習(xí)用具是固定的,但是他們所采用的方式卻是不一樣的,學(xué)生有著各自不同的思維方式。
2、在計(jì)算的過程中,運(yùn)用公式計(jì)算時(shí)往往丟失“1/3”,單位名稱用錯(cuò),體積單位用面積單位。
再教設(shè)想:
1.為了避免單位名稱的錯(cuò)誤,可在課前復(fù)習(xí)中設(shè)計(jì)單位換算的填空題,辨析題等。例如:1立方米=——立方分米=——立方厘米,100平方厘米=1立方分米。
2.在學(xué)生利用學(xué)具理解公式的推導(dǎo)過程時(shí),應(yīng)放手讓學(xué)動(dòng)手動(dòng)腦自己解決,但動(dòng)手之前一定要把任務(wù)布置清楚,讓孩子們自己發(fā)現(xiàn)圓錐與圓柱體各部分之間的關(guān)系,從而推導(dǎo)出圓錐的體積公式。
《圓錐的體積》教學(xué)反思12
以前教學(xué)圓錐的體積時(shí),由于教具的制作非常麻煩,多是先由教師演示等底等高情況下的圓柱體積的三分之一正好是圓錐的體積,再讓學(xué)生驗(yàn)證,最后教師通過對(duì)比實(shí)驗(yàn)說明不等底等高的差異,但收到的效果不佳,計(jì)算圓錐的體積時(shí)容易忘掉乘。學(xué)生對(duì)等底等高這一重要條件掌握并不牢固,理解很模糊。在本次課中,新課一開始,我就讓學(xué)生觀察,根據(jù)學(xué)習(xí)體積的經(jīng)驗(yàn),先判斷四個(gè)圓錐的體積大小,引導(dǎo)學(xué)生猜測(cè)圓錐的體積和它的什么有關(guān),學(xué)生聯(lián)系到了圓柱的體積,都能說出圓錐的體積跟它的底面積和高有關(guān)系,在猜想中激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生明白學(xué)習(xí)目標(biāo)。
為了讓學(xué)生理解等底等高是判斷圓錐的體積是圓柱體積的三分之一的前提條件,同時(shí)為了節(jié)約教學(xué)時(shí)間,我設(shè)計(jì)了這樣的教學(xué)片斷:讓學(xué)生思考,圓錐與學(xué)過哪個(gè)立體圖形的關(guān)系最近?為什么?學(xué)生很容易找到圓柱,接著我又拿出幾個(gè)不同的圓柱,問:考考你們的眼力,選擇哪個(gè)來研究這個(gè)圓錐的體積比較好?將學(xué)生選的圓柱進(jìn)行驗(yàn)證,發(fā)現(xiàn)與圓錐是等底等高,告訴學(xué)生在選擇實(shí)驗(yàn)材料時(shí)要盡量選擇有些相同條件的,這樣實(shí)驗(yàn)時(shí)可以少走彎路,實(shí)驗(yàn)的結(jié)果準(zhǔn)確些,在這個(gè)過程中加深了對(duì)等底等高這個(gè)條件的理解。這時(shí),讓學(xué)生進(jìn)行小組合做,實(shí)驗(yàn)探究,經(jīng)歷一番觀察、發(fā)現(xiàn)、合作、創(chuàng)新的過程,得出圓錐體積等于和它等底等高圓柱體積的三分之一。這樣讓學(xué)生置身于有目的的實(shí)踐中,增加對(duì)實(shí)驗(yàn)條件的選擇及信息的歸納。既圓滿地推導(dǎo)出了圓錐的'體積公式,又促進(jìn)了學(xué)生實(shí)踐能力和批判意識(shí)的發(fā)展。而這些目標(biāo)的實(shí)現(xiàn),完全是優(yōu)化實(shí)驗(yàn)過程所產(chǎn)生的效果。
在小組合作學(xué)習(xí)中,為了增強(qiáng)實(shí)效性,避免走形式,在課前,我引導(dǎo)學(xué)生制作等底等高的一組圓柱和圓錐,使每個(gè)學(xué)生都能真切的參與實(shí)驗(yàn)、參與到探究中去,讓他們以這樣每個(gè)學(xué)生都能懷著喜悅的心情進(jìn)行學(xué)習(xí),最大限度的發(fā)揮每個(gè)學(xué)生的自主學(xué)習(xí)的能力,這樣的學(xué)習(xí)不僅使學(xué)生學(xué)會(huì)了知識(shí),更重要的是培養(yǎng)了學(xué)生的能力。
通過本節(jié)課的教學(xué),我意識(shí)到在平時(shí)的課堂教學(xué)中,我們要善于利以學(xué)生認(rèn)識(shí)發(fā)展規(guī)律為依托:發(fā)現(xiàn)問題,提出問題探究解決問題,探究解決問題得出結(jié)論,實(shí)際應(yīng)用使學(xué)生在認(rèn)識(shí)實(shí)踐再認(rèn)識(shí)、再實(shí)踐中理解運(yùn)用知識(shí)。在教學(xué)環(huán)節(jié)中以學(xué)生探究為基礎(chǔ)引導(dǎo)學(xué)生在探究中總結(jié)規(guī)律,并運(yùn)用規(guī)律解決實(shí)際問題,激發(fā)學(xué)生探究的興趣感受到數(shù)學(xué)的應(yīng)用性,解決問題的樂趣,逐步提高學(xué)生探究知識(shí)應(yīng)用知識(shí)解決實(shí)際問題的能力。
本節(jié)課的教學(xué)中比較遺憾的時(shí),在制作課件時(shí)考慮不周全,幾個(gè)圓錐的相關(guān)數(shù)據(jù)不準(zhǔn)確,比例不合適,對(duì)學(xué)生的學(xué)習(xí)造成了不必要的麻煩,影響了學(xué)生的判斷結(jié)果,這些看似細(xì)節(jié)的環(huán)節(jié),卻反映了在備課時(shí)的粗心大意,對(duì)學(xué)生也會(huì)產(chǎn)生不良的影響,今后要注意,時(shí)刻記。杭(xì)節(jié)決定成功!
《圓錐的體積》教學(xué)反思13
1、學(xué)生通過自己的實(shí)驗(yàn),非常順利地得到等底等高的圓柱和圓錐體積之間的關(guān)系,推導(dǎo)出來圓錐的體積計(jì)算公式。原因之處有:(1)猜想:發(fā)揮學(xué)生的空間想象,使學(xué)生初步建立圓錐與圓柱體積之間的'關(guān)系,教師預(yù)設(shè)學(xué)生可能粗略地知道有“三分之一”這一關(guān)系,“那么三分之一這一關(guān)系怎樣推導(dǎo)呢”引起以下怎樣推導(dǎo)圓錐的體積這一過程。
。2)在推導(dǎo)過程中,帶著思考題(思考題實(shí)際就是學(xué)生實(shí)驗(yàn)的過程),讓學(xué)生帶有目標(biāo)進(jìn)行實(shí)驗(yàn),讓學(xué)生更有目的性,也非常方便,有操作性。
。3)學(xué)具準(zhǔn)備充分,各小組選擇水、沙子,增強(qiáng)趣味性,主動(dòng)性,積極性高。
(4)公式推導(dǎo)完之后的一個(gè)反例子(出示一個(gè)非常大的圓柱和一個(gè)非常小的圓錐),讓學(xué)生明確并不是所有的圓錐的體積都是圓柱體積的三分之一,從而強(qiáng)調(diào)了等底等高。
2、練習(xí)題由淺入深,判斷題主要是要加深學(xué)生對(duì)概念、公式的運(yùn)用和理解,第2題是書上的一組題,為提高效率只列式不計(jì)算,這三道題分別是告訴底面積和高、底面半徑和高、底面直徑和高,把幾種類型都呈現(xiàn)出來。最后一題是動(dòng)手實(shí)踐題,一要考察學(xué)生的公式運(yùn)用情況,二要考察學(xué)生的解決實(shí)際問題的能力及策略,雖然沒做幾道題,但我覺得:解決問題比什么都重要。
3、本來想用不等底、不等高的圓柱和圓錐參與實(shí)驗(yàn),考慮到可能會(huì)得出錯(cuò)誤結(jié)論而影響體積公式的推導(dǎo),所以把這一環(huán)節(jié)省去。設(shè)計(jì)了一組大的等底等高的圓錐和圓柱,讓學(xué)生明確不管大小,只要等底等高就有3倍這樣的關(guān)系。
4、時(shí)間分配上不到位,例題的處理中,考慮到本節(jié)的重點(diǎn)是理解公式并運(yùn)用公式,所以沒花多的時(shí)間,由于數(shù)字教大,部分學(xué)生沒做完。
《圓錐的體積》教學(xué)反思14
《圓錐的體積》是人教版小學(xué)數(shù)學(xué)六年級(jí)下冊(cè)第三單元的內(nèi)容之一,它是學(xué)生在學(xué)習(xí)了圓柱的認(rèn)識(shí),圓柱的表面積,圓柱的體積,圓錐的認(rèn)識(shí)基礎(chǔ)之上,學(xué)習(xí)的。這一堂課,我有幸邀請(qǐng)了三位同伴來聽我的課,給我一定的指導(dǎo),我也從中發(fā)現(xiàn)了自己的一些問題。
這節(jié)課中,我注重學(xué)生操作的過程,我的設(shè)想就是要學(xué)生經(jīng)歷這個(gè)過程。首先要讓學(xué)生觀察,我手中的學(xué)具,圓錐和圓柱有什么共同點(diǎn)?學(xué)生發(fā)現(xiàn),它們是等底等高的。接下來,我提出問題,它們誰的體積大?但是關(guān)于這個(gè)問題,學(xué)生的回答,基本上沒有答到點(diǎn)子上,有學(xué)生說,因?yàn)檎l的表面積大,所以體積大。本來我預(yù)設(shè)中,很容易觀察發(fā)現(xiàn)的體積對(duì)比,但是,因?yàn)槲业奶釂枺鼈冋l的體積大,為什么,這個(gè)為什么,讓學(xué)生絞盡腦汁去想,去套一些內(nèi)容。后來我反思,我應(yīng)該先把圓錐放入圓柱里,讓學(xué)生直接說出,圓錐的體積,比等底等高的圓柱體積小;蛘哂迷囼(yàn)的方法,把圓錐的水,倒入圓柱,讓學(xué)生直接得到體積比大小的結(jié)論。接下來,先讓學(xué)生說說方法如何驗(yàn)證圓錐和等底等高圓柱體積之間的關(guān)系是什么?根據(jù)以前學(xué)的圓柱體積,學(xué)生得出了三個(gè)方法,排水法,實(shí)驗(yàn)法,測(cè)量體積法。根據(jù)一些情況,排水法無法實(shí)現(xiàn)。學(xué)具是空心的,會(huì)漂浮在水面,其次,學(xué)具有縫隙,水會(huì)滲進(jìn)去。所以排水法,只是作為學(xué)生了解的方法,但并不實(shí)踐。在試驗(yàn)環(huán)節(jié),我沒有說清楚具體的操作要求,導(dǎo)致個(gè)別學(xué)生在操作中,用圓柱的水,倒進(jìn)圓錐里,這樣難以得出正確的'結(jié)論。大多數(shù)學(xué)生,聽清了我的要求,幾杯圓錐的水,可以倒入圓柱。學(xué)生很容易就得出了結(jié)論。我讓學(xué)生在黑板上小組演示倒水的過程,同時(shí),也讓其他學(xué)生一起數(shù)杯數(shù),也是加深試驗(yàn)結(jié)果。我多讓幾個(gè)學(xué)生說一說,圓錐和等底等高圓柱體積之間的關(guān)系,用了關(guān)聯(lián)詞,因?yàn)?..所以...我也引導(dǎo)學(xué)生,多次強(qiáng)調(diào),這樣的關(guān)系一定有一個(gè)前提,圓錐和圓柱是等底等高的。為了驗(yàn)證這樣的體積關(guān)系,我抽學(xué)生上講臺(tái),利用測(cè)量法,來驗(yàn)證。當(dāng)然,我在最后也強(qiáng)調(diào),試驗(yàn)只是一種手段,得出的結(jié)論可能是不精確的,但是數(shù)學(xué)家驗(yàn)證了這一點(diǎn),所以大家可以直接用這條結(jié)論。
美中不足就是習(xí)題沒有時(shí)間去練習(xí)。學(xué)生都有最佳遺忘曲線,如果沒有練習(xí)題,學(xué)生的知識(shí)沒有在最佳的時(shí)間去鞏固去檢測(cè),對(duì)于真正理解知識(shí),鞏固知識(shí)是不利的。我設(shè)計(jì)的習(xí)題,都是書上的,還是缺乏一點(diǎn)趣味性、層次性。
總之,這節(jié)課,不是很完美,有很多遺憾。以后的幾何課中,我還是會(huì)多讓學(xué)生歷經(jīng)操作的過程,學(xué)生在操作中觀察、歸納、驗(yàn)證、總結(jié)。操作前,一定要講清楚操作要求,還要預(yù)設(shè)更多可能會(huì)出現(xiàn)的
情況,時(shí)間的把控要再精確一點(diǎn),自己的教學(xué)語言,還更規(guī)范一些,多用一些激勵(lì)語,以后的教學(xué)設(shè)計(jì),盡量多考慮如何體現(xiàn)趣味性這個(gè)問題。
《圓錐的體積》教學(xué)反思15
圓錐的體積是學(xué)生在掌握了圓錐的認(rèn)識(shí)和圓柱的體積的基礎(chǔ)上教學(xué)的。是小學(xué)幾何初步知識(shí)教學(xué)的重要內(nèi)容。本節(jié)教學(xué)分兩個(gè)層次進(jìn)行,一是推導(dǎo)圓錐體積計(jì)算公式,二是運(yùn)用公式求圓錐的體積。在教學(xué)時(shí),主要運(yùn)用了探究式的教學(xué)方法進(jìn)行教學(xué),收到了較好的效果,現(xiàn)總結(jié)以下幾點(diǎn)做法:
一、大膽猜測(cè),培養(yǎng)猜測(cè)意識(shí)。
假設(shè)和猜想是科學(xué)的天梯,是科學(xué)探究的重要一環(huán)。任何發(fā)明創(chuàng)造都是離不開假設(shè)和猜想的;谶@樣的認(rèn)識(shí),結(jié)合本節(jié)課教學(xué)內(nèi)容的特點(diǎn),在教學(xué)中借助教具和學(xué)具,讓學(xué)生充分觀察“等底等高的圓柱和圓錐”后,再大膽猜想它們的體積可能會(huì)有什么樣的關(guān)系?”這樣設(shè)計(jì),事實(shí)證明不僅僅是能夠培養(yǎng)學(xué)生的猜測(cè)意識(shí),更重要的是充分調(diào)動(dòng)了所有學(xué)生的積極性,大家探究的欲望強(qiáng)烈,為本節(jié)課的成功教學(xué)奠定了基礎(chǔ)。
二、操作驗(yàn)證,培養(yǎng)科學(xué)的實(shí)驗(yàn)觀。
數(shù)學(xué)不僅是思維科學(xué),也是實(shí)驗(yàn)科學(xué),通過觀察猜想,實(shí)驗(yàn)操作得到數(shù)學(xué)結(jié)論,這種形式也是進(jìn)行科學(xué)研究的最基本形式.教學(xué)中,使學(xué)生通過自主探究實(shí)驗(yàn)得出結(jié)論:圓錐的體積是與這個(gè)圓錐等底等高的圓柱體積的三分之一。從而總結(jié)出圓錐體積的計(jì)算公式:V=1/3Sh。
教學(xué)圓錐的體積計(jì)算時(shí)先分組做實(shí)驗(yàn),在空?qǐng)A錐里裝滿沙子,然后倒入空等底等高的圓柱中,從倒的次數(shù)中觀察到怎樣的現(xiàn)象呢??jī)烧唧w積之間有怎樣的關(guān)系。我們將空?qǐng)A錐里裝滿沙子,然后倒入空?qǐng)A柱中,三次正好裝滿。說明圓錐的體積是圓柱的三分之一。然后用不等底等高的圓錐和圓柱所得的情況與以上不同。最后得到一個(gè)原理等底等高。圓錐的體積等于和它等底等高的圓柱體積的三分。
《圓錐的體積》的'教學(xué)都是先由教師演示等底等高情況下的三分之一,再讓學(xué)生去驗(yàn)證,最后教師通過對(duì)比實(shí)驗(yàn)說明不等底等高的差異,而在以上教育中卻不然,先采用學(xué)生做實(shí)驗(yàn)的方法,讓學(xué)生親自實(shí)踐,在實(shí)際中懂得其中的道理,用一個(gè)等底等高圓柱和圓錐,讓學(xué)生分組進(jìn)行實(shí)際操作,使學(xué)生清楚的知道其中的知識(shí)點(diǎn),明白了圓錐與圓柱之間的體積關(guān)系,從而是學(xué)生發(fā)現(xiàn)其中的數(shù)學(xué)原理,而且有意地將實(shí)驗(yàn)的環(huán)節(jié)復(fù)合,在看似混亂無序的實(shí)踐中,增加了學(xué)生對(duì)實(shí)驗(yàn)條件的辨別及信息的批判,同時(shí)這也是這堂課需要解決的重點(diǎn)和難點(diǎn)。在整個(gè)教學(xué)過程中,重視讓學(xué)生參與教學(xué)的全過程,學(xué)生始終是活動(dòng)的主體,我則是這一活動(dòng)的組織者、指導(dǎo)者、和參與者。同時(shí)引導(dǎo)學(xué)生用科學(xué)的態(tài)度去對(duì)待這個(gè)實(shí)驗(yàn),實(shí)事求是,認(rèn)真分析自己操作實(shí)驗(yàn)出現(xiàn)了和別人不太一樣的結(jié)論的原因,培養(yǎng)學(xué)生科學(xué)實(shí)驗(yàn)觀。學(xué)生學(xué)的主動(dòng),經(jīng)歷了一番觀察、發(fā)現(xiàn)、合作、探究的過程,既能達(dá)到圓滿地推導(dǎo)出了圓錐的體積公式,又使學(xué)生的實(shí)踐能力得到發(fā)揮。
總之,這節(jié)課,每個(gè)學(xué)生都經(jīng)歷了“猜想———實(shí)驗(yàn)———發(fā)現(xiàn)”的自主探究學(xué)習(xí)的過程。學(xué)生獲得的不僅是鮮活的數(shù)學(xué)知識(shí),獲得更多的是科學(xué)探究的學(xué)習(xí)方法和研究問題的方法,孩子們體驗(yàn)到了探究成功的喜悅,進(jìn)行了探究失敗的深刻反思,有利于從小樹立科學(xué)的實(shí)驗(yàn)觀。思考:如果長(zhǎng)期在這樣的探究中去學(xué)習(xí)知識(shí),學(xué)生就會(huì)變成有思想、會(huì)思考、會(huì)研究、會(huì)學(xué)習(xí)的人。
【《圓錐的體積》教學(xué)反思】相關(guān)文章:
圓錐的體積教學(xué)反思04-12
圓錐的體積教學(xué)反思03-21
《圓錐的體積》數(shù)學(xué)教學(xué)反思10-19
《圓錐體的體積》教學(xué)反思04-16
《圓錐體積》教學(xué)反思04-02
圓錐的體積教學(xué)反思15篇03-31
《圓錐的體積》教學(xué)反思15篇02-10
圓錐的體積教學(xué)反思(15篇)03-31