- 相關(guān)推薦
圓的面積教案(15篇)
作為一位兢兢業(yè)業(yè)的人民教師,時常會需要準(zhǔn)備好教案,教案是教學(xué)活動的依據(jù),有著重要的地位。優(yōu)秀的教案都具備一些什么特點呢?以下是小編幫大家整理的圓的面積教案,歡迎閱讀與收藏。
圓的面積教案1
教學(xué)目標(biāo)
1.使學(xué)生理解圓面積公式的推導(dǎo)過程,掌握求圓面積的方法并能正確計算;
2.培養(yǎng)學(xué)生動手操作的能力,啟發(fā)思維,開闊思路;
3.滲透初步的辯證唯物主義思想。
教學(xué)重點和難點
圓面積公式的推導(dǎo)方法。
教學(xué)過程設(shè)計
(一)復(fù)習(xí)準(zhǔn)備
我們已經(jīng)學(xué)習(xí)了圓的認(rèn)識和圓的周長,誰能說說圓周長、直徑和半徑三者之間的關(guān)系?
已知半徑,圓周長的一半怎么求?
(出示一個整圓)哪部分是圓的面積?(指名用手指一指。)
這節(jié)課我們一起來學(xué)習(xí)圓的面積怎么計算。
(板書課題:圓的面積)
(二)學(xué)習(xí)新課
1.我們以前學(xué)過的三角形、平行四邊形和梯形的面積公式,都是轉(zhuǎn)化成已知學(xué)過的圖形推導(dǎo)出來的,怎樣計算圓的面積呢?我們也要把圓轉(zhuǎn)化成已學(xué)過的圖形,然后推導(dǎo)出圓面積的計算公式。
決定圓的大小的是什么?(半徑)所以,分割圓時要保留這個數(shù)據(jù),沿半徑把圓分成若干等份。
展示曲變直的變化圖。
2.動手操作學(xué)具,推導(dǎo)圓面積公式。
為了研究方便,我們把圓等分成16份。圓周部分近似看作線段,其
用自己的學(xué)具(等分成16份的圓)拼擺成一個你熟悉的、學(xué)過的'平面圖形。
思考:
(1)你擺的是什么圖形?
(2)所擺的圖形面積與圓面積有什么關(guān)系?
(3)圖形的各部分相當(dāng)于圓的什么?
(4)你如何推導(dǎo)出圓的面積?
(學(xué)生開始動手?jǐn)[,小組討論。)
指名發(fā)言。(在幻燈前邊說邊擺。)
①拼出長方形,學(xué)生敘述,老師板書:
、谶能不能拼出其它圖形?
學(xué)生可以拼出:
等等
剛才,我們用不同思路都能推導(dǎo)出圓面積的公式是:S=r2。這幾種思路的共同特點都是將圓轉(zhuǎn)化成已學(xué)過的圖形,并根據(jù)轉(zhuǎn)化后的圖形與圓面積的關(guān)系推導(dǎo)出面積公式。
例1 一個圓的半徑是4厘米,它的面積是多少平方厘米?
S=r2=3.1442=3.1416=50.24(平方厘米)
答:它的面積是50.24平方厘米。
想一想;求圓面積S應(yīng)知道什么?如果給d和C,又怎樣求圓面積?
(三)鞏固反饋
1.求下面各圓的面積。
r=2(單位:分米) d=6(單位:分米)
2.選擇題。
用2米長的繩子把小羊拴在草地上的木框上,羊吃到地上的草的最大面積是多少?
(1)3.1422=12.56(米)
(2)3.1422=12.56(平方米)
(3)3.1432=28.26(平方米)
3.思考題:
已知正方形的面積是18平方米,求圓的面積。(如圖)
課堂教學(xué)設(shè)計說明
1.使學(xué)生運用遷移的方法,把新知識轉(zhuǎn)化為舊知識,把圓轉(zhuǎn)化成已經(jīng)學(xué)過的圖形。
2.在面積公式推導(dǎo)過程中,老師介紹分割圓的方法,展示由曲變直的過程,然后引導(dǎo)學(xué)生動手操作,小組討論,從各個角度推導(dǎo)出圓面積公式。培養(yǎng)學(xué)生動手操作,口頭表達和邏輯思維的能力,滲透了極限和轉(zhuǎn)化思想。
3.安排了坡度適當(dāng)、由易到難的練習(xí)題,使學(xué)生由淺入深地掌握了知識,形成了技能。同時,還注意培養(yǎng)學(xué)生邏輯推理的能力。
圓的面積教案2
【圖解教材】
利用光盤幫助學(xué)生理解求圓環(huán)的面積是利用外圓的面積減去內(nèi)圓面積。
【課時目標(biāo)】
1、學(xué)會已知圓的周長求圓的面積的解題思路與方法,理解并學(xué)會環(huán)形面積。
2、培養(yǎng)學(xué)生靈活、綜合運用知識的能力,運用所學(xué)的知識解決簡單的實際問題。
3、培養(yǎng)學(xué)生的邏輯思維能力。
【教學(xué)重點】求圓環(huán)的面積的方法。
【教學(xué)難點】運用所學(xué)知識解決實際問題。
【教學(xué)過程】
一、復(fù)習(xí)
1、口算:
32 42 52 82 92 202
2π 3π 6π 10π 7π 5π
2、思考:
。1)圓的周長和面積分別怎樣計算?二者有何區(qū)別?
。2)求圓的面積需要知道什么條件?
。3)知道圓的周長能夠求它的面積嗎?
二、新課
1、教學(xué)練習(xí)十六第3題
小剛量得一棵樹干的周長是125.6cm,這棵樹干的橫截面積是多少?
已知:c=125.6厘米 s=πr2
r:125.6÷(2×3.14) 3.14×202
=125.6÷6.28 =3.14×400
=20(厘米) =1256(平方厘米)
答: 這棵樹干的橫截面積1256平方厘米。
3、教學(xué)環(huán)形面積。
。1)例2 光盤的銀色部分是個圓環(huán),內(nèi)圓半徑是2cm,外圓半徑是6cm。它的面積是多少?
已知:R=6厘米 r=2厘米 求: s=?
3.14×62 3.14×22
=3.14×36 =3.14×4
=113.04(平方厘米) =12.56(平方厘米)
113.04-12.56=100.48 (平方厘米)
第二種解法:3.14×(62-22)=100.48(平方厘米)
(2)小結(jié):環(huán)形的面積計算公式:
S=πR2-πr2 或 S=π×(R2-r2)
。3)完成做一做: 一個圓形環(huán)島的直徑是50m,中間是一個直徑為10m的圓形花壇,其他地方是草坪。草坪的'占地面積是多少?
三、課堂小結(jié);
四、板書設(shè)計:
【評價方案】
一、達標(biāo)測評
●學(xué)校有個圓形花壇,周長是18.84米,花壇的面積是多少?
選擇正確算式
A、(18.84÷3.14÷2)2×3.14
B、(18.84÷3.14)2×3.14
C、18.842×3.14
●環(huán)形鐵片,外圈直徑20分米,內(nèi)圓半徑7分米,環(huán)形鐵片的面積是多少?
●課堂小結(jié)。
(1)這節(jié)課的學(xué)習(xí)內(nèi)容是什么?
。2)求圓的面積時題中給出的已知條件有幾種情況?怎樣求出圓面積?
已知半徑求面積 S=πr2
已知直徑求面積 S=π()2
已知周長求面積 S=π()2
。3)環(huán)形面積: S=π(R2-r2)
二、效度評價
參評人數(shù)( )
題號
1
2
3
答對人數(shù)
正確率
三、教學(xué)反思
學(xué)生參與程度
教學(xué)目標(biāo)達成度
經(jīng)驗積累
問題分析
改進措施
圓的面積教案3
教學(xué)內(nèi)容:圓的面積第67—68頁圓面積公式的推導(dǎo)。例1及做一做的第1題。練習(xí)十六的第1、2、5題。
教學(xué)目標(biāo):
、笔箤W(xué)生理解圓面積的含義,理解圓面積計算公式的推導(dǎo)過程,掌握圓面積的計算公式。
、才囵B(yǎng)學(xué)生動手操作、抽象概括的能力,運用所學(xué)知識解決簡單實際問題。
、碀B透轉(zhuǎn)化的數(shù)學(xué)思想。
教學(xué)重點:圓面積的含義。圓面積的推導(dǎo)過程。
教學(xué)難點:圓面積的推導(dǎo)過程。
教學(xué)過程:
一、復(fù)習(xí)。
1、已知r,周長的一半怎樣求?
2、用手中的三角板拼三角形,長方形、正方形、平行四邊形等,并說出這
些圖形的面積計算公式。
s=abs=a2s=ahs=ahs=(a+b)h
二、新課。
1、什么是圓的面積?(出示紙片圓讓生摸一摸)
圓所占平面大小叫做圓的面積。
2、推導(dǎo)圓的面積公式。
。1)演示:將等分成16份的圓展開,問可拼成一個什么樣的圖形?
若分的分?jǐn)?shù)越多,這個圖形越接近長方形。
。1)找:找出拼出的圖形與圓的周長和半徑有什么關(guān)系?
圓的半徑=長方形的寬
圓的周長的一半=長方形的長
長方形面積=長寬
所以:圓的面積=圓的周長的一半圓的半徑
S=r
S圓=r=r2
3、你還能用其他方法推算出圓的面積公式嗎?
。1)將圓16等份,取其中一份,看作是一個近似的三角形,三角形的面積是這個圓面積的。這個三角形底是圓周長的',三角形的高是圓的半徑。
因為:三角形面積=底高
圓面積=
=rr
=r2
。2)將圓16等分,取其中兩份,可以拼成一個近似的平行四邊形。平行四邊形面積是圓面積的,平行四邊形的底是,三角形的高即一個半徑,
因為:平行四邊形面積=底高
圓面積=r
=r8
=r2
還可以取3份、4份等,同學(xué)們可以一一推算。
三、運用知識解決實際問題。
1、例1一個圓的直徑是20m,它的面積是多少平方米?
已知:d=20厘米求:s=?
r=d2202=10(m)
s=Лr2
3。14102
=3。14100
=314(平方厘米)
2、根據(jù)下面所給的條件,求圓的面積。
r=5cmd=0。8dm
3、解答下列各題。
。1)一個圓形茶幾桌面的直徑是1m,它的面積是多少平方厘米?
。2)公園草地上一個自動旋轉(zhuǎn)噴灌裝置的射程是10m。它能噴灌的面積是多少?
四、作業(yè)。
課本P70第1、5題。
圓的面積教案4
教學(xué)目標(biāo):
1、學(xué)生通過觀察、操作、分析和討論,推導(dǎo)出圓的面積公式。
2、能夠利用公式進行簡單的面積計算。
3、滲透轉(zhuǎn)化思想,初步了解極限思想,培養(yǎng)學(xué)生的觀察能力和動手操作能力。
教學(xué)重難點:滲透轉(zhuǎn)化思想,初步了解極限思想,培養(yǎng)學(xué)生的觀察能力和動手操作能力。
教學(xué)過程
一、嘗試轉(zhuǎn)化,推導(dǎo)公式
1、確定“轉(zhuǎn)化”的策略。
師:同學(xué)們,你們想一想,當(dāng)我們還不會計算平行四邊形的面積的時候,是利用什么方法推導(dǎo)出了平行四邊形的面積計算公式呢?
引導(dǎo)學(xué)生明確:我們是用“割補法”將平行四邊形轉(zhuǎn)化成長方形的方法推導(dǎo)出了平行四邊形的面積計算公式。
師:同學(xué)們再想想,我們又是怎樣推導(dǎo)出三角形的面積計算公式的呢?
師:對了,我們將平行四邊形、三角形“轉(zhuǎn)化”成其它圖形的方法來推導(dǎo)出它們的面積計算公式。
2、嘗試“轉(zhuǎn)化”。
師:那么,怎樣才能把圓形轉(zhuǎn)化為我們已學(xué)過的其它圖形呢?(板書課題:圓的面積)
請大家看屏幕(利用課件演示),老師先給大家一點提示。
師:(教師配合課件演示作適當(dāng)說明)如果我們把一個圓形平均分成16份(如圖三),其中的每一份(如圖四,課件閃爍其中1份)都是這個樣子的。同學(xué)們,你們覺得它像一個什么圖形呢?
師:是的,其中的每一份都是一個近似三角形。請同學(xué)們再想一想,這個近似三角形這一條邊(教師指示)跟圓形有什么關(guān)系呢?
引導(dǎo)學(xué)生觀察,明確這個近似三角形的兩條邊其實都是圓的半徑。
師:如果我們用這些近似三角形重新拼組,就可以將這個圓形“轉(zhuǎn)化”成其它圖形了。同學(xué)們,老師為你們每個小組都準(zhǔn)備了一個已經(jīng)等分好了的圓形,請你們動手拼一拼,把這個圓形“轉(zhuǎn)化”成我們已學(xué)過的其它圖形,開始吧!
預(yù)設(shè):學(xué)生利用這種近似三角形拼組圖形會有一定的難度,教師要加強巡視和有針對性的指導(dǎo),既鼓勵學(xué)生拼出自己想象中的圖形,又要引導(dǎo)他們拼出最簡單、最容易計算面積的圖形。一般情況下,學(xué)生會拼出如下幾種圖形(如圖五、圖六、圖七)。
3、探究聯(lián)系。
師:同學(xué)們,“轉(zhuǎn)化”完了嗎?好,請大家來展示一下你們“轉(zhuǎn)化”后的圖形。
預(yù)設(shè):
分組逐個展示,并將其中“轉(zhuǎn)化”成長方形的一組的作品貼在黑板上。如果有小組轉(zhuǎn)化成了不規(guī)則的'圖形,教師應(yīng)及時引導(dǎo)他們轉(zhuǎn)化為我們已學(xué)過的平面圖形。
師:好,各個小組都不錯。現(xiàn)在請同學(xué)們思考一個問題:你們把一個圓形“轉(zhuǎn)化”成了現(xiàn)在的圖形之后,它們的面積有沒有改變?請小組內(nèi)討論。
師:誰來告訴大家,它們的面積有沒有改變?
師:是的,沒有改變,就是說:這個近似的長方形的面積=圓的面積。
師:雖然我們現(xiàn)在拼成的是一個近似的長方形,但是如果把圓等分成32份、64份、128份、256份……一直這樣下去分成很多很多份,拼成的圖形就變?yōu)檎嬲拈L方形(課件演示,如圖八)。
4、推導(dǎo)公式。
師:現(xiàn)在我們就來看這個長方形。同學(xué)們,如果圓的半徑為r,你們知道這個長方形的長和寬分別是多少嗎?現(xiàn)在請小組為單位進行討論討論。
師:好,同學(xué)們,誰能首先告訴老師,這個長方形的寬是多少?
預(yù)設(shè):
根據(jù)學(xué)生的回答,教師演示課件,同時閃爍圓的半徑和長方形的寬,并標(biāo)示字母r,如圖九。
師:那這個長方形的長是多少呢?(教師邊演示課件邊說明)這個長方形是由兩個半圓展開后拼成的,請大家看屏幕,這個紅色的半圓展開后,其中這條黃色的線段就是長方形的長(如圖十),請同學(xué)們仔細(xì)觀察(課件繼續(xù)演示如圖十一,半圓展開后再還原,再展開,),這個長方形的長究竟與圓的什么有關(guān)?究竟是多少呢?
預(yù)設(shè):
教師引導(dǎo)學(xué)生明白:這個長方形的長與圓的周長有關(guān),并且是圓的周長的一半(如果學(xué)生有困難的話,教師利用課件演示,如圖十二)。并且讓學(xué)生通過計算得出長方形的長就是πr。
師:現(xiàn)在我們已經(jīng)知道了這個長方形的長和寬(如圖十三),它的面積應(yīng)該是多少?那圓的面積呢?
預(yù)設(shè):
老師根據(jù)學(xué)生的回答進行相關(guān)的板書。
師:你們真了不起,學(xué)會了“轉(zhuǎn)化”的方法推導(dǎo)出圓的面積計算公式,F(xiàn)在請大家讀一讀,記一記,寫一寫圓的面積計算公式。
二、運用公式,解決問題
1、教學(xué)例1。
師:同學(xué)們,從這個公式我們可以看出,要求圓的面積,必須先知道什么?(出示例1)如果我們知道一個圓形花壇的直徑是20m,我們該怎樣求它的面積呢?請大家動筆算一算這個圓形花壇的面積吧!
預(yù)設(shè):
教師應(yīng)加強巡視,發(fā)現(xiàn)問題及時指導(dǎo),并提醒學(xué)生注意公式、單位使用是否正確。
2、完成做一做。
師:真不錯!現(xiàn)在請同學(xué)們翻開數(shù)學(xué)課本第69頁,請大家獨立完成做一做的第1題。
訂正。
3、教學(xué)例2。
師:(出示例2)這是一張光盤,這張光盤由內(nèi)、外兩個圓構(gòu)成。光盤的銀色部分是一個圓環(huán)。請同學(xué)們小聲地讀一讀題。開始!
師:怎樣求這個圓環(huán)的面積呢?大家商量商量,想想辦法吧!
師:找到解決問題的方法了嗎?
師:好的,就按同學(xué)們想到的方法算一算這個圓環(huán)的面積吧!
預(yù)設(shè):
教師繼續(xù)對學(xué)困生加強巡視,如果還有問題的學(xué)生并給予指導(dǎo)。
交流,訂正。
三、課堂作業(yè)。
教材第70頁第2、3、4題。
四、課堂小結(jié)
師:同學(xué)們,通過這節(jié)課的學(xué)習(xí),你有什么收獲?
課后作業(yè):完成數(shù)練第31頁。
圓的面積教案5
教學(xué)目標(biāo)
1、使學(xué)生學(xué)會圓環(huán)面積的計算方法,以及圓形與矩形混合圖形的相關(guān)計算方法。
2、學(xué)會利用已有的知識,運用數(shù)學(xué)思想方法,推導(dǎo)出圓環(huán)面積計算公式,有關(guān)于圓形與正方形應(yīng)用的解答方法。
3、培養(yǎng)學(xué)生觀察、分析、推理和概括的能力,發(fā)展學(xué)生的空間概念。
教學(xué)重難點
1、教學(xué)重點
會利用圓和其他已學(xué)的相關(guān)知識解決實際問題。
2、教學(xué)難點
圓與其他圖形計算公式的混合使用。
教學(xué)工具
PPT卡片
教學(xué)過程
1、復(fù)習(xí)鞏固上節(jié)知識,導(dǎo)入新課
2、新知探究
2、1圓環(huán)面積
一、問題引入
同學(xué)們知道光盤可以用來做什么嗎?誰能來描述一下光盤的外觀。
回答(略)。
今天我們就來做一做與光盤相關(guān)的數(shù)學(xué)問題。
二、圓環(huán)面積求解
例2、光盤的銀色部分是一個圓環(huán),內(nèi)圓半徑是50px,外圓半徑是150px。圓環(huán)的面積是多少?
步驟:
師:求圓環(huán)面積需要先求什么?
生:內(nèi)圓和外圓的面積
師:同學(xué)們可以自己做一做,分組交流一下自己的解法。
師:給出計算過程與結(jié)果:
三、知識應(yīng)用
做一做第2題:
一個圓形環(huán)島的直徑是50m,中間是一個直徑為10m的圓形花壇,其他地方是草坪。草坪的占地面積是多少?
師:這是一道典型的圓環(huán)面積應(yīng)用題。通過直徑得到半徑,代入圓環(huán)面積公式,很簡單。
2、2圓與正方形
一、問題引入
師:同學(xué)們知道蘇州的園林吧。大家有沒有觀察過園林建筑的窗戶?它有很多很漂亮的設(shè)計,也有很多很常見的圖形,比如五邊形、六邊形、八邊形等等。其中外圓內(nèi)方或者外方內(nèi)圓是一種很常見的設(shè)計。
師:不僅是在園林中,事實上在中國的建筑和其他的設(shè)計中都經(jīng)常能見到“外圓內(nèi)方”和“外方內(nèi)圓”,比如這座沈陽的方圓大廈、商標(biāo)等等。下面我們來認(rèn)識一下這種圓形與正方形結(jié)合起來構(gòu)成的圖形。
二、知識點
例3:圖中的兩個圓半徑是1m,你能求出正方形和圓之間部分的面積嗎?
步驟:
師:題目中都告訴了我們什么?
生:左圖圓的半徑=正方形的邊長的一半=1m;右圖圓的面積=正方形對角線的一半=1m
師:分別要求的是什么?
生:一個求正方形比圓多的面積,一個求圓比正方形多的面積。
師:應(yīng)該怎么計算呢?
歸納總結(jié)
如果兩個圓的半徑都是r,結(jié)果又是怎樣的呢?
當(dāng)r=1時,與前面的結(jié)果完全一致。
四、知識應(yīng)用
70頁做一做:
下圖是一面我國唐代外圓內(nèi)方的銅鏡。銅鏡的直徑是600px。外面的圓與內(nèi)部的正方形之間的面積是多少?
師:同學(xué)們用我們剛剛學(xué)過的'知識來解答一下這道題目吧。
解:銅鏡的半徑是300px
5、3隨堂練習(xí)
若還有足夠時間,課堂練習(xí)練習(xí)十五第5/6/7題。
(可以邀請同學(xué)板書解題過程)
6 小結(jié)
1、今天我們共同研究了什么?
今天我們在已知圓和正方形的面積公式的前提下,探索了圓環(huán)和“外圓內(nèi)方”“外方內(nèi)圓”圖形的面積計算方法。這不是要求同學(xué)們記住這些推導(dǎo)出來的公式,而是希望同學(xué)們能過明白推導(dǎo)的方法,以后遇到類似的問題可以自己運用學(xué)過的知識來解決問題。
2、在日常生活中經(jīng)常需要去求圓的面積,譬如說:蒙古包做成圓形的是因為可以最大化地利用居住面積,植物根莖的橫截面是圓形的,也是因為可以最大化的吸收水分。我們還可以再舉出其他的一些例子,如裝菜的盤子、車輪為什么要做成圓形的?大家需要多看多想!
7板書
例2解答步驟
圓的面積教案6
【第一課時】 圓的面積
一、 教學(xué)目標(biāo)
1.知識與技能
理解圓的面積的概念,理解和掌握圓面積的計算公式,并能正確計算圓的面積,解答有關(guān)的實際問題。
2.過程與方法
引導(dǎo)學(xué)生利用已有的知識,通過猜想、操作、驗證、歸納等活動,經(jīng)歷圓面積計算公式的推導(dǎo)過程,培養(yǎng)學(xué)生觀察、操作、分析、概括的能力,發(fā)展空間觀念,滲透轉(zhuǎn)化、極限等數(shù)學(xué)思想方法。
3.情感態(tài)度與價值觀
通過自主探究圓面積轉(zhuǎn)化的過程,培養(yǎng)學(xué)生大膽創(chuàng)新,勇于嘗試,克服困難的精神,使學(xué)生體驗成功的樂趣。
二、教學(xué)重點
正確計算圓的面積。
三、教學(xué)難點
圓面積公式的推導(dǎo)。
四、教學(xué)具準(zhǔn)備
課件、學(xué)具。
五、教學(xué)過程
(一)情境導(dǎo)入
1.?dāng)⑹觯核自捳f的好:“民以食為天”。餐桌是家家戶戶必不可少的。這不,小明家就新購置了一張圓形的餐桌。為了起到保護作用,媽媽給了他一個任務(wù),讓他去配一個與桌面相同大小的玻璃桌面。這可把小明難住了,這玻璃桌面該多大呢?【可使用圓的圖片2】 同學(xué)們,要想幫助小明解決他的問題我們需要用到什么知識呢?
今天這節(jié)課我們就來學(xué)習(xí)圓面積的求法。(板書題目:圓的面積)
2.看到今天的課題,你都想知道什么?
3.什么是圓的面積?在哪?摸摸看。
。▽W(xué)生摸手中圓形紙片,并用手指出圓的面積)
過渡語:圓的面積怎樣求呢?在這里,我們不妨先回憶一下其它圖形面積的推導(dǎo)過程。
(二)復(fù)習(xí)舊知識
1.你還記得我們已經(jīng)學(xué)過了哪些圖形的面積求法嗎?
。ㄉ洪L方形、正方形、平行四邊形、三角形、梯形)
2.回憶一下,平行四邊形面積計算公式我們是怎樣推導(dǎo)出來的?(課件演示)
3.問:其它圖形呢?(學(xué)生簡要敘述其他面積推導(dǎo)過程)
4.小結(jié):這樣看來,當(dāng)我們遇到新問題時,往往可以借助已有的知識進行解決。
(三)學(xué)習(xí)新課
1.請你猜猜看,圓的面積公式應(yīng)該怎么推導(dǎo)出來?
。ㄉ恨D(zhuǎn)化成已知的圖形進行推導(dǎo))
2.怎么轉(zhuǎn)化?想想辦法。任意的分成幾份行嗎?
。ㄉ貉貓A的直徑將圓平均分成若干份)
3.下面請大家動手實際拼擺一下,看看自己的想法能否實現(xiàn)。請看活動要求:
。1)以組為單位,先擺圖形。
。2)看看拼出的圖形的底和高與圓的.關(guān)系,并推導(dǎo)圓的面積公式。
。3)有問題及時記錄,以便討論。
。▽W(xué)生動手拼擺并貼在白紙上)
4.你們遇到什么問題了嗎?
。ㄉ哼叢皇侵钡,是彎的)。
5.誰能幫助他解決這個問題?
(學(xué)生談自己的想法)
6.是的,邊不是直的這可怎么辦呢?我們已拼成長方形為例,當(dāng)我們把圓平均分成四份,拼成的圖形是這樣的;把圓平均分成8份,拼成的圖形是這樣的;把圓平均分成16份,拼成的圖形是這樣的;把圓平均分成32份;拼成的圖形是這樣的。(課件展示)
【可使用圓的圖片27】
7.同學(xué)們請你對比大屏幕上拼得的這幾幅圖,你有什么想法嗎?
(學(xué)生談自己的想法)
8.看來,把圓平均分的份數(shù)越多,曲線越接近于線段,拼得的圖形越接近我們所學(xué)過的圖形。當(dāng)分成無數(shù)份時,曲線也就變成了直線。這個問題解決了么?下面繼續(xù)小組合作,推導(dǎo)圓面積計算公式。
。▽W(xué)生談自己的想法)
9.匯報不同推導(dǎo)方法:
轉(zhuǎn)化成長方形的:
長方形的面積=a × b 圓的面積=c×r 2
=π r × r
。溅 r 2
轉(zhuǎn)化成平行四邊形的:
平行四邊形的面積= a × h
圓的面積= c × r 2
。溅 r × r
。溅 r 2
轉(zhuǎn)化成三角形的:
三角形的面積= 1× a × h 2
圓的面積= 1c×4r 24
c× r 2 =
=π r 2
轉(zhuǎn)化成梯形的: 梯形面積=1×(a+b)× h 2
15c3c×(+)×2r 21616
1c××2r 22
c× r 2圓形面積= ==
。溅 r 2
10.觀察一下,這些推導(dǎo)過程有什么相同的地方?
。ㄉ憾际菍A轉(zhuǎn)化成已知圖形去推導(dǎo)的)
11.總結(jié):由此可知,我們在推導(dǎo)圓面積計算公式的時候可以用全部的小扇形推導(dǎo),也可以用一個小扇形推導(dǎo),當(dāng)然也可以用部分小扇形推導(dǎo)。
現(xiàn)在我們圓面積的計算公式已經(jīng)推導(dǎo)出來了,小明的問題可以解決了我嗎?要想解決它的問題我們需要知道哪些條件?(圓的直徑、半徑或周長)
(四)鞏固練習(xí)
1.求圓的面積(單位:厘米)
r=3 答案:s=28.26(平方厘米)
d=20答案:s=314(平方厘米)
c=125.6答案:s=1256(平方厘米)
2.小明測量出桌面的直徑是2米,你能算出玻璃桌面的面積嗎?
答案:3.14×22 =12.56(平方米)
3.判斷
(1)直徑是2厘米的圓,它的面積是12.56平方厘米。()
。2)兩個圓的周長相等,面積也一定相等。()
(3)圓的半徑越大,圓所占的面積也越大。()
。4)圓的半徑擴大3倍,它的面積擴大6倍。 ()
4.聽故事解題:
巴依老爺買來一群羊。
巴依老爺說:“阿凡提,快把新買的羊趕倒圈里去”。
阿凡提說:“老爺,這個長方形羊圈太小了!”
巴依老爺:“什么,太小了?你不把羊全部趕進去,哼哼,你的工錢就別拿了!要不,你自己花錢買些材料,把羊圈圍大些!
阿凡提想:“該怎么辦呢?怎么樣才能既不花錢另買材料,又能夠讓羊圈的面積變大呢?”
同樣聰明的同學(xué)們,你們能幫阿凡提想個辦法嗎?并且請你說明你的理由。
(五)小結(jié)
今天這節(jié)課你有什么收獲?
【第二課時】 圓環(huán)面積
一、 教學(xué)目標(biāo)
1.知識與技能
掌握圓環(huán)面積的計算方法,能靈活解決生活中相關(guān)的簡單實際問題。
2.過程與方法
在經(jīng)歷畫圓環(huán)、剪圓環(huán)的活動過程中,初步感受圓環(huán)的特點、形成過程,進而探索出圓環(huán)面積計算的方法。培養(yǎng)學(xué)生觀察、動手操作、比較、分析、概括等能力。
3.情感態(tài)度與價值觀
進一步體驗圖形與生活的聯(lián)系,感受平面圖形的學(xué)習(xí)價值,提高學(xué)習(xí)數(shù)學(xué)的興趣。
二、教學(xué)重點
圓環(huán)的特征、圓環(huán)面積公式的推導(dǎo)及運用。
三、教學(xué)難點
靈活運用圓環(huán)面積的計算方法解決相關(guān)的簡單實際問題。
四、教學(xué)具準(zhǔn)備
課件、學(xué)具。
五、教學(xué)過程
(一)學(xué)習(xí)方法回顧、鋪墊回憶一下
我們在推導(dǎo)圓面積計算公式時用到了什么學(xué)習(xí)方法?
。ㄉ喊褕A形轉(zhuǎn)化成學(xué)過的平面圖形,利用舊知識推導(dǎo)出新知識。)
這也就是我們常說的遇到不會的想會的,把新知識轉(zhuǎn)化成了舊知識解決。 板書:不會
想 會
新 舊
這節(jié)課我們繼續(xù)用這種方法研究新問題。
(二)創(chuàng)設(shè)實際應(yīng)用的問題情境
1.同學(xué)們你們喜歡看動畫片嗎?今天老師帶來了幾張光盤,看,這是什么?
。1)動畫光盤(2)歌曲光盤
。3)空白封面光盤
2.想知道這張光盤的內(nèi)容嗎?我們一起來看看。
欣賞學(xué)生的校園活動照片。
這些照片見證了我們同學(xué)6年來快樂的校園生活,非常珍貴。想不想把它珍藏起來?老師打算把這些照片刻成光盤,等你們畢業(yè)時當(dāng)畢業(yè)禮物送給你們好嗎?
3.現(xiàn)在這張光盤的封面還空著呢,你想不想親自為它設(shè)計一個有紀(jì)念意義的封面呢?要進行設(shè)計,咱們先了解一下哪部分是可以進行封面設(shè)計的。
4.小組內(nèi)摸一摸準(zhǔn)備的光盤實物,再讓學(xué)生實投指一指。
師課件演示(由實物抽象出線條圖形、涂色圖形)【可使用圓動畫14】
5.這個圖形有什么特點?
生:由兩個圓組成,它們的圓心是相同的。(課件點擊出圓心)
6.師說明:這樣兩個同心圓所夾的部分我們把它叫做圓環(huán)。
板書課題:圓環(huán)
外面的圓我們叫它外圓,里面的小圓我們叫它內(nèi)圓。兩個圓周之間的距離我們叫做環(huán)寬。
圓的面積教案7
設(shè)計說明
1.利用圓內(nèi)知識間的內(nèi)在聯(lián)系,解決實際問題。
學(xué)生在掌握了圓的面積計算公式的推導(dǎo)過程之后,能夠利用公式解決實際問題。教材中根據(jù)圓的周長求圓的面積,對學(xué)生來說,有一定的難度,學(xué)生要在已有的圓的周長知識的基礎(chǔ)上,求出圓的半徑,再利用公式求出圓的面積。讓學(xué)生體會到了知識間是環(huán)環(huán)相扣的,提高了學(xué)生利用所學(xué)知識解決實際問題的能力。
2.重視圖示的作用。
結(jié)合圖示來理解圓中量與量之間的關(guān)系,使抽象的條件直觀化,既降低了學(xué)習(xí)難度,又利于學(xué)生找到計算圓的面積所需要的條件,進而求出圓的面積。
課前準(zhǔn)備
教師準(zhǔn)備 PPT課件
學(xué)生準(zhǔn)備 圓片 剪刀
教學(xué)過程
一、創(chuàng)設(shè)情境,激發(fā)興趣
師:南湖公園的草坪上安裝了許多自動噴水頭,噴射的距離為3米,噴水頭轉(zhuǎn)動一周形成的是什么圖形?(圓)
師:噴水頭轉(zhuǎn)動一周可以澆灌多大的面積呢?這個面積就是誰的面積?(圓的面積)
師:同學(xué)們,上節(jié)課我們學(xué)習(xí)了圓的面積計算公式的推導(dǎo)過程,今天這節(jié)課,我們繼續(xù)研究圓的面積。利用圓的面積計算公式來解決生活中的實際問題。[板書:圓的面積(二)]
設(shè)計意圖:創(chuàng)設(shè)問題情境,讓學(xué)生在生活中發(fā)現(xiàn)問題,激發(fā)學(xué)生探究新知的興趣,為新知的學(xué)習(xí)做好鋪墊。
二、探究新知,建構(gòu)模型
1.課件演示自動旋轉(zhuǎn)噴灌裝置在灌溉農(nóng)田的生活情境,并引導(dǎo)學(xué)生討論“噴水頭轉(zhuǎn)動一周形成什么圖形?噴水頭轉(zhuǎn)動一周能澆灌多大面積的農(nóng)田?圓的面積是指哪一部分?”,結(jié)合提出的幾個問題,引導(dǎo)學(xué)生區(qū)分圓的周長和面積。
師:怎么求出澆灌的面積呢?(生匯報:根據(jù)S=πr2得出3.14×32=3.14×9=28.26m2,強調(diào)要先算“平方”)
教師小結(jié):已知圓的半徑求圓的面積時,可以直接利用圓的面積計算公式進行計算。
2.課件出示教材16頁例題,認(rèn)真讀題,想一想題中給出的已知條件有哪些。(羊圈的形狀是圓、羊圈的周長是125.6m)
(1)想一想,要求羊圈的面積,首先要知道圓的哪一部分?(半徑)
(2)該如何求出圓的半徑呢?同桌說一說。(出示課堂活動卡) (學(xué)生反饋:根據(jù)圓的周長計算公式可知周長除以圓周率再除以2就可以求出圓的半徑)
(3)根據(jù)這個解題思路讓學(xué)生獨立完成。[全班反饋:半徑:125.6÷3.14÷2=20(m) 面積:3.14×202=1256(m2)]
3.探究推導(dǎo)圓的面積計算公式的其他方法。
(1)引導(dǎo)學(xué)生觀察所拼成的圖形,想一想拼成的三角形的底相當(dāng)于圓的哪一部分,拼成的三角形的`高相當(dāng)于圓的哪一部分。(學(xué)生反饋:拼成的三角形的底相當(dāng)于圓的周長,拼成的三角形的高相當(dāng)于圓的半徑)
(2)茶杯墊片剪開后,雖然形狀變了,但剪開前后的面積并沒有改變。根據(jù)三角形的面積計算公式,推導(dǎo)出圓的面積計算公式。
圓的面積=三角形的面積=底×高÷2=2πr×r÷2=πr2
設(shè)計意圖:學(xué)生在具體情境中了解圓的面積的含義,體會計算圓的面積的必要性,激發(fā)研究圓的面積的興趣。引導(dǎo)學(xué)生探究不同條件下求圓的面積的方法,發(fā)展學(xué)生的發(fā)散思維和積極探究的能力。用拼三角形的方法探究圓的面積計算公式,再一次體現(xiàn)了“化曲為直”的數(shù)學(xué)思想。
圓的面積教案8
【教學(xué)目標(biāo)】
知識技能:讓學(xué)生理解圓面積的含義,經(jīng)歷猜想、操作、驗證、討論和歸納等過程,探索并掌握圓的面積計算公式的推導(dǎo)過程及其公式的應(yīng)用。
數(shù)學(xué)思考:經(jīng)歷自主探索圓的面積計算公式的推導(dǎo)過程,體會和掌握“轉(zhuǎn)化”和“極限”的數(shù)學(xué)思想方法,發(fā)展空間觀念。
問題解決:培養(yǎng)學(xué)生發(fā)現(xiàn)和提出問題,分析和解決問題的能力。
情感態(tài)度:培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣,增強合作交流的意識,在提升自我的同時,尊重他人,在表現(xiàn)自我的同時,心中有他人。
【教學(xué)重點】
掌握圓的面積計算公式,能夠正確地計算圓的面積。
【教學(xué)難點】
理解圓的面積計算公式的推導(dǎo)過程。
【教學(xué)準(zhǔn)備】
。1)軟硬件設(shè)備:多媒體教學(xué)課件、平板互動系統(tǒng)、教師和學(xué)生平板終端,
。2)教具:圓紙片、不同等分的圓卡片
。3)學(xué)具:剪刀、圓紙片、不同等分的圓卡片。
【教學(xué)過程】
學(xué)生課前完成課前導(dǎo)學(xué)案(后附課前導(dǎo)學(xué)案的內(nèi)容)
一、課前互動:
師:同學(xué)們,前段時間我看到了一個很有意思繪本故事,想看嗎?大家請看,其中一張圖片是這樣的,猜一猜最后的這一棵盆栽會長出怎樣的圖形呢?為什么?
生:越來越接近圓形。
生:圓形,因為從三角形開始,然后到正方形、正五邊形……圖形越來越接近圓形。
師:說的太好,看來我們班的同學(xué)們都是觀察能力強,思維敏捷的同學(xué)。隨著正多邊形邊數(shù)越來越多,越來越多,這個圖形就會越來越接近一個圓了
師:哪一個圖形最特別。
生:圓形,因為它是曲線圍成的圖形,其它是由線段圍成的圖形。
師:真棒,其實這一張圖片蘊藏著一個非常重要的數(shù)學(xué)思想,這個思想幫助我們解決了一個歷史難題,想知道是什么思想嗎?
生:想。
師:那么希望通過這節(jié)課的學(xué)習(xí),大家會有所感悟。下面我們就開始上課了。上課。
二、創(chuàng)設(shè)情境,引發(fā)問題
師:同學(xué)們,我們已經(jīng)認(rèn)識了圓,知道了怎樣求圓的周長,今天這節(jié)課我們要研究的內(nèi)容是圓的面積。(板書課題)
師:看到課題你最想研究什么問題?
。A(yù)設(shè))生:什么是圓的面積?
。A(yù)設(shè))生:如何求圓的面積?
師:問的好,能提出問題的一定是會思考的同學(xué),很多偉大的發(fā)明往往從提問開始,我們來整理一下提出的問題,主要是:圓的面積是什么?如何求圓的面積?(教師板書:是什么?如何求?)
【設(shè)計意圖】數(shù)學(xué)課程標(biāo)準(zhǔn)提出四基和四能,其中一項是培養(yǎng)學(xué)生提出問題的能力,這也是很多教師所忽視的環(huán)節(jié),通常讓學(xué)生提問題的環(huán)節(jié)讓本課的研究更能激發(fā)學(xué)生的興趣,針對性更強。
師:現(xiàn)在我們逐個問題來解決。請看,這里有一個圓(出示一個圓的方框)誰來說一說什么是這個圓的面積?
(預(yù)設(shè))生:圓的大小就是它的面積,
師:說的對,是這一部分的大小嗎?(課件把圓填充顏色)
師:(拿出手表)那么,什么是這個圓形手表鏡面的面積?(手表鏡面占平面的大。,所以圓占平面的大小就是它的面積,看來,“什么是圓的面積”這個問題大家很容易就解決了。
。ㄕn件出示)
師:接著我們來研究如何求圓的面積。請看,第一個正方形是由四個小正方形組成的,每個小正方形的邊長是r,那么每個小正方形的面積大家會求嗎?(會,是r×r,也就是r2),這個大正方形的面積就是4
r2,等于4個小正方形的面積之和,大家猜一猜第二個正方形的面積大約等于幾個這樣的小正方形的面積呢?
(預(yù)設(shè))生:2個小正方形的面積
(預(yù)設(shè))生:3個小正方形的面積
師:這樣猜還是有一點困難,根據(jù)我們以前的經(jīng)驗,可以把第二個正方形重疊到第一個圖像上來比比。
(預(yù)設(shè))生:等于兩個正方形的面積之和,也就是2r2,。
師:那么這個圓的面積呢?還要重疊過來嗎?
師:原來這個圓的半徑和小正方形的邊長是相等的。誰來說說這個圓的面積是多少?
(預(yù)設(shè))生:大約是3r2
師:能確定?為什么不估2r2和4r2
(預(yù)設(shè))生:因為里面這個綠色的正方形的面積是2r2,圓的面積比它大,而藍(lán)色大正方形的面積是4r2,圓的面積比它小。所以我估算是3r2.
師:分析得有道理,太棒了,通過這比較的辦法,我們知道了圓的面積的范圍,就是大于2個以圓的半徑為邊長的正方形面積之和,小于4個小正方形面積之和。這也是數(shù)學(xué)上經(jīng)常說的“內(nèi)外逼近”的方法。
。ㄕn件出示)兩個正方形的面積<圓的.面積<4個正方形的面積
2r2<S圓<4r2
師:那么圓的面積與r2(也就是與以圓的半徑為邊長的這個小正方形的面積),是否存在一個固定的倍數(shù)關(guān)系呢?如果有,又是幾倍的關(guān)系呢?根據(jù)課前我對多個學(xué)校六年級學(xué)生的調(diào)查,發(fā)現(xiàn)主要有以下的幾種想法。
(平板電腦出示題目和選項:那么圓的面積與它的r2是否存在一個固定的倍數(shù)關(guān)系呢?如果存在,它是幾倍的關(guān)系呢?
A:圓的面積是它的r2的3倍
B:圓的面積是它的r2的3.5倍
C:圓的面積是它的r2的π倍
D:圓的面積是它的r2存在其他的倍數(shù)關(guān)系
D:圓的面積與它的r2不存在固定的倍數(shù)關(guān)系)
師:你認(rèn)同哪一種呢?請大家根據(jù)剛才的分析和昨天課前的思考,在平板電腦上獨立作出選擇。(學(xué)生選完后系統(tǒng)對數(shù)據(jù)進行統(tǒng)計,并出示條形統(tǒng)計圖)
師:有30%的同學(xué)認(rèn)為圓的面積是它的r2的3倍
,有50%的同學(xué)認(rèn)為圓的面積是它的r2的π倍,還有少部分同學(xué)有其他的想法。太棒了,這些都是我們自己珍貴的猜想,很多偉大的發(fā)明都是來源于猜想,至于這些猜想是否正確呢?就要進行驗證,最后得出結(jié)論(板書:猜想、驗證、結(jié)論)現(xiàn)在我們一起進入驗證的環(huán)節(jié),請大家先思考一下,你打算怎樣驗證自己的猜想,可以獨立思考或小組合作,也可以結(jié)合昨天的課前小研究、還可以利用桌面的圓紙片。比一比誰最快有思路。開始吧!
【設(shè)計意圖】通過比較圓與小正方形的面積關(guān)系,不僅讓學(xué)生鞏固了圓面積的概念,初步了解圓的面積在2
r2與4
r2之間,還體會了“內(nèi)外逼近”的數(shù)學(xué)思想。另外,在學(xué)生提出猜想的環(huán)節(jié)加入平板互動系統(tǒng)的統(tǒng)計,更加清晰和全面地反映了學(xué)生的思維困惑,更加直面學(xué)生的認(rèn)知基礎(chǔ),既關(guān)注了全體學(xué)生的培養(yǎng),又重視了學(xué)生的個性化發(fā)展,給學(xué)生提供了一個更大的學(xué)習(xí)空間,充分地體現(xiàn)先學(xué)后教的教學(xué)理念。
三、啟發(fā)探究,嘗試驗證
(一)數(shù)格子驗證
師:誰來說說你的想法?
。A(yù)設(shè))生:可以利用數(shù)格子的方法。
。▽W(xué)生的課前研究單上有一個半徑是3厘米的圓)
(預(yù)設(shè))生:我數(shù)了半徑是3厘米的圓,不滿一個的算半格,每個格子是1平方厘米,圓的面積大約26格。所以面積大約是26平方厘米。
師:數(shù)格子(板書:數(shù)格子),很好的思路,數(shù)出圓的面積再除以半徑的平方就可以知道它們之間的倍數(shù)關(guān)系了。26除以半徑的平方大約等于3,大家覺得這個思路怎樣?這樣數(shù)出來的得數(shù)有誤差嗎?
。A(yù)設(shè))生:有,這些不滿格的要估算。
師:有道理,你看,這些不滿格的還有這么大面積需要估算(指著圖),那么,有什么辦法提高數(shù)格子的精準(zhǔn)度?如果把格子變小一點,像這樣(課件出示下圖)估算的誤差會不會小一點。
。A(yù)設(shè))生:會,因為這樣需要估算的面積就會越少,所以更準(zhǔn)確。
(課件展示)
師:如果繼續(xù)把格子變小,無限地變小,想象一下,這樣數(shù)出來的結(jié)果就會(就會很準(zhǔn)確了)。
師:講得太棒了,像這樣把格子無限地平均分,其實相當(dāng)于把圓平均分成無數(shù)個格子,這種思想就是我們數(shù)學(xué)常說的極限思想。(板書:數(shù)格子
極限思想)
師:但是,如果格子分得太細(xì)的話,我們能數(shù)得過來嗎?(不能),看來,通過數(shù)格子的辦法也很難準(zhǔn)確地求出圓的面積,還有沒有別的思路?
【設(shè)計意圖】數(shù)格子是學(xué)生計算新圖形面積的常用辦法,通過匯報“課前研究單”中數(shù)圓的面積,并比較格子的大小對估算圓面積大小的影響,讓學(xué)生初步感受數(shù)格子中的極限思想,同時引出了數(shù)格子的不足,為下一步把圓平均分成無數(shù)個近似三角形埋下伏筆。
。ǘ皩φ邸彬炞C
(預(yù)設(shè))生:我用對折的辦法,把圓對折、再對折、再對折,折到這么小,就很像一個三角形,這樣就可以求出三角形的面積,再乘以三角形的數(shù)量就是圓的面積了。
師:真棒,思路非常獨特,你覺得同學(xué)們都聽懂了嗎?你覺得哪個地方同學(xué)們不是很理解,還要重點再講講?
。A(yù)設(shè))生:要盡量折得小一點,這樣圓的這條曲邊就會越來越直(邊操作,邊說),這樣就會越來越近似于三角形。
師:大家同意嗎?太厲害了,我覺得這里應(yīng)該有掌聲。這個同學(xué)用對折的辦法,相當(dāng)于把圓平均分成若干份,(拿著學(xué)生的圓)平均分成4份的時候,這個近似三角形的底邊還是比較彎曲的,對折幾次后這個近似三角形的底邊就會越來直了,如果讓這條邊變得更直的話,我們要怎樣做?
(預(yù)設(shè))生:再對折。
師:折一折,看一看,這條邊是不是更直了,再對折看看
。A(yù)設(shè))生:太小了,折不了,
師:沒關(guān)系,紙片折不了,我們可以利用平板電腦幫忙,請大家打開平板,繼續(xù)把圓平均分,看看有什么發(fā)現(xiàn)(學(xué)生利用平板電腦點擊把圓平均分成32、64、128份)
師:(學(xué)生展示平均分成128份)這是大家平板上的畫面,你來說說。
。A(yù)設(shè))生:隨著平均分的分?jǐn)?shù)越多,這條邊就會越直,128等分的時候,這條邊已經(jīng)很直了。
師:請大家閉上眼睛想象一下,如果繼續(xù)無限地平均分,這條底邊就會(簡直就變成直線了)
師:太棒了,剛才同學(xué)們想到了,把圓平均分(板書:平均分)成無限個近似的三角形,這樣每個近似三角形的這條曲邊就會無限的接近于直線,這就是極限思想的魅力,它能畫曲為直(板書:化曲為直),然后只要求出一個近似三角形的面積,再乘三角形的數(shù)量就等于圓的面積了。
【設(shè)計意圖】這一環(huán)節(jié)很多教師的做法是讓學(xué)生折紙以后再用課件展示,這種做法中學(xué)生的體驗是不足的,因此在這里引入平板電腦的手段,讓學(xué)生不但可以通過折一折,還能利用平板電腦把圓平均分成更多等分,再結(jié)合分享和展示,增加學(xué)生在操作中的體會和經(jīng)歷,更加直觀地理解化曲為直和極限數(shù)學(xué)思想。
。ㄈ┑确e轉(zhuǎn)化驗證
師:還有其他的思路嗎?
。A(yù)設(shè))生:把圓平均分后再拼成我們學(xué)過的圖形,就像把平行四邊形剪拼成長方形。
師:說得好,你的思維很敏銳,厲害,轉(zhuǎn)化,把未知轉(zhuǎn)化成已知,像求平行四邊形面積的時候,把它剪拼轉(zhuǎn)化成長方形,然后再推導(dǎo)出計算公式,這樣就不用數(shù)近似三角形的數(shù)量了,直接就能求出圓的面積就,不如我們一起來試試看。(板書:轉(zhuǎn)化
、推導(dǎo))
師:在每人的平板電腦上里都有4等分、8等分、16等分的圓,也可以利用等分圓的學(xué)具,還可以利用圓紙片進行任意的剪拼,請以小組為單位展開探索
活動要求:1.拼一拼。將等分后的圓拼成一個我們學(xué)過的圖形。
2.比一比,拼成的圖形中哪一個更接近于我們學(xué)過的圖形。
(學(xué)生在小組內(nèi)操作的畫面在講臺的一體機中流動顯示)
師:誰來說說你的發(fā)現(xiàn),你是幾號平板(馬上在一體機中調(diào)出學(xué)生的畫面)
(預(yù)設(shè))生:16等分的圓拼成的圖形更接近于我們學(xué)過的平行四邊形。因為16等分拼成的圖形的底邊是最直的。
師:為什么會最直呢?
。A(yù)設(shè))生:像剛才一樣,平均分成的分?jǐn)?shù)越多,每一份就越近似于一個三角形,底邊就越直,拼成的圖形就越近似于平行四邊形。
師:如果像這樣繼續(xù)平均分,會變成怎樣呢?請打開平板系統(tǒng),繼續(xù)試一試(每人的平板出示32、64、128等分的圓)
師:誰來講講發(fā)現(xiàn)。
。A(yù)設(shè))生:你看,等分圓的份數(shù)越多,拼成的圖形的底邊會越來越直,而且(指著圖形的兩條寬)左右兩條邊跟底邊就越接近于垂直,所拼成的圖形越接近于長方形。
師:請大家閉上眼睛想象一下,如果像這樣繼續(xù)無限地平均分,平均分成256分等等……,然后再拼起來,拼成的圖形就會無限的接近一個長方形了,這個極限思想太了不起了,不僅能畫曲為直,還能化圓為方。(板書:化圓為方)
我建議我們要把這個過程留在板書上,我們通過把圓平均分成若干個近似的小三角形,然后拼成近似的長方形,隨著無限地平均分,這樣拼成的圖形就會無限地接近一個真正的長方形。(板書:16等分的圓拼成的圖形和一個長方形)
【設(shè)計意圖】這一環(huán)節(jié)融合信息技術(shù)手段能有效打破傳統(tǒng)學(xué)具的限制,傳統(tǒng)的學(xué)具最多把圓平均分成32份,這樣拼起來的圖形與長方形還是有很大的區(qū)別,理解化圓為方的思想有些困難。當(dāng)信息技術(shù)與傳統(tǒng)學(xué)具融合后,學(xué)生不僅能更直觀、更方便地探究,而且又避免了信息化手段容易固化學(xué)生研究思維的缺點,讓學(xué)生還能利用常規(guī)學(xué)具進行隨意剪拼,這樣學(xué)生研究的素材更多元化。另外,通過平板系統(tǒng),學(xué)生在探究和分享、師生互動、學(xué)生間互相學(xué)習(xí)的過程中都能隨時調(diào)用畫面到屏幕上進行互動。讓教學(xué)更加直觀形象,讓交流分享更加充分和完善,讓學(xué)生的互相學(xué)習(xí)更加有效。
師:研究到這里,到了最關(guān)鍵的一步了,就是推導(dǎo)計算公式,這個過程是老師教你,還是大家自己來。
。A(yù)設(shè))生:自己來。
師:真的,我就站在旁邊,有困難就舉手。
四、尋找聯(lián)系、推導(dǎo)公式
要求:
想一想:近似長方形的長和寬與圓的什么有關(guān)呢?
試一試:把推導(dǎo)的過程寫下來。
師:我把這個畫面(圓形轉(zhuǎn)化成長方形的過程的畫面)發(fā)到大家的平板上,大家可以結(jié)合我們剛剛的發(fā)現(xiàn)來推導(dǎo)。
學(xué)生分享:
。A(yù)設(shè))生:因為拼成的長方形的面積等于圓的面積,拼成的長方形的長近似于圓周長的一半,寬近似于圓的半徑,而且長方形的面積=長×寬,所以圓的面積=圓的周長的一半×圓的半徑,即S圓=C÷2×r。
因為C=2πr,所以S圓=πr×r,S圓=πr2。
師:我真沒想到我們班同學(xué)能把這個問題講的這么清楚,你覺得大家在哪一部分的理解還是有點欠缺呢?要不要再講講?
(預(yù)設(shè))生:我覺得長方形的長近似于圓周長的一半這點是比較難發(fā)現(xiàn)的,要這樣來看,在圓平均分成若干份后,把這些近似的小三角形分成了上下兩部分,例如下面這部分,這些小三角形的底邊就是原來圓的邊,它們的總長就是原來圓的周長的一半。
【設(shè)計意圖】通過平板系統(tǒng)的引入,在推導(dǎo)公式的過程中,每個小組不僅可以把推導(dǎo)的過程發(fā)送到互動平臺讓其他小組互相學(xué)習(xí),而且在分享中也能隨時調(diào)出其他小組的作品加以質(zhì)疑和評價,從而提高了學(xué)習(xí)的深度學(xué)習(xí)。
師:太棒了,見過厲害的,但是沒見過這么厲害的,掌聲鼓勵一下。
師:經(jīng)過大家的研究我們似乎把公式推導(dǎo)出來了,我們一起來整理一下,
師:拼成的近似長方形的面積等于圓的面積,長方形的長近似于圓周長的一半,寬近似于圓的半徑,長方形的面積=長×寬,所以圓的面積=圓的周長的一半×圓的半徑,即S圓=C÷2×r。
因為C=2πr,所以S圓=πr×r,S圓=πr2。
。ò鍟
S長方形=長×寬
S圓=周長的一半×半徑=C÷2×r=2πr÷2×r=πr2
師:太好了,終于把公式推導(dǎo)出來了,原來圓的面積就等于它半徑的平方再乘π,圓的面積與它半徑的平方之間是π倍的關(guān)系,哪些同學(xué)猜對了(學(xué)生舉手),掌聲表揚,你們有數(shù)學(xué)家的眼光。沒猜對的同學(xué)也不要緊,因為你們已經(jīng)把公式推導(dǎo)出來了,也掌聲鼓勵。你知道嗎,在古代,曾經(jīng)有很多的數(shù)學(xué)家對圓的面積做了詳細(xì)的研究,其中比較著名的就是魏晉數(shù)學(xué)家劉徽的千古絕技
“割圓術(shù)”請看。
五、感受數(shù)學(xué)文化的魅力
。ㄕ故疚簳x數(shù)學(xué)家劉徽割圓術(shù)視頻)
師:劉徽在當(dāng)時這么簡單的條件下計算了正3072邊形面積。他提出的計算圓周率的科學(xué)方法,奠定了此后一千多年來,中國圓周率計算在世界上的領(lǐng)先地位。此時此刻我再一次為我國古代的數(shù)學(xué)文化感到震撼和自豪。而且,這也是我們課前小游戲的奧秘,無限分割和極限思想。所以我也為大家在這節(jié)課上的發(fā)現(xiàn)和總結(jié)感到驕傲。
【設(shè)計意圖:通過介紹魏晉數(shù)學(xué)家劉徽的割圓術(shù),讓學(xué)生進一步感受優(yōu)秀傳統(tǒng)中國數(shù)學(xué)文化,不僅增加了民族自豪感,還培養(yǎng)了數(shù)學(xué)素養(yǎng)】
六、鞏固知識,實際應(yīng)用
師:既然已經(jīng)我們推導(dǎo)出圓的面積公式,接著來嘗試運用公式來解決實際的問題(板書:運用),你會嗎?(會)
1.一個圓形沙井蓋的半徑是30厘米,這是沙井蓋表面的面積是多少?
2.一個圓形花壇的周長是12.56米,這個花壇的面積是多少?
七、全課總結(jié),課堂延伸
師:大家請看(指著板書),我們班的同學(xué)太棒了,一節(jié)課下來有了那么多的總結(jié),如果要圈出本課的重點,你覺得要圈什么?(圈出本課的核心)
(預(yù)設(shè))生:S圓=πr2
、轉(zhuǎn)化、化曲為直、極限……
師:剛才我們遇到問題的時候,采取了什么策略,(猜想、驗證、結(jié)論、運用),在驗證的過程中運用了什么方法(轉(zhuǎn)化、化曲為直、極限思想)
師:對于圓的面積你有什么新的思考。
(預(yù)設(shè))生:圓的面積還有其他的推導(dǎo)方法嗎?
師:問的好,生活中還有很多的有趣的推導(dǎo)圓面積的方法,例如可以把它拼成一個三角形甚至是拼成梯形,大家可以帶著這個問題回去繼續(xù)探索,只要大家用數(shù)學(xué)的眼光和數(shù)學(xué)解決問題的方法去研究,你會有更多的發(fā)現(xiàn)。這節(jié)課就上到這里,下課。
八、布置作業(yè)
書本第68頁做一做的第一題。
。}目:一個圓形茶幾的直徑是1M,它的面積是多少平方米?)
2、書本71頁第4題。
(題目:小剛量得一顆樹干的周長是125.6cm,這棵樹干的橫截面近似于圓,它的面積大約是多少?)
3、嘗試用不同的方法推導(dǎo)出圓的面積計算公式,下一節(jié)課與同學(xué)們分享。
九、板書設(shè)計
附錄:《課前導(dǎo)學(xué)案》
《圓的面積》課前小研究工作紙
班別:
學(xué)號:
姓名:
同學(xué)們!大家好,上一節(jié)課我們已經(jīng)學(xué)習(xí)了圓的周長,接著要學(xué)習(xí)什么呢?當(dāng)然是圓的面積啦!還等什么呢,趕快出發(fā)吧,馬上進入數(shù)學(xué)的神奇世界……
同學(xué)們,看到《圓的面積》這個課題,你想到什么問題?請把它寫下來。(寫2-3個問題)
2、請大家先觀察下面圖,你知道圓的面積和這個小正方形的面積有什么關(guān)系?
圓的面積小于于()個小正方形的面積
我們可以這樣分析:
圓的面積大于()個小正方形的面積
()<圓的面積<()
3、我們還可以通過數(shù)格子的辦法數(shù)出圓的面積,試試看吧!
圖中每個格子的面積是1平方厘米,圓的半徑是3厘米,請你數(shù)一數(shù),這個圓形的面積大約占了()個格子,所以圓的面積大約是()平方厘米。
。榱朔奖銛(shù)數(shù),你可以在格子中寫數(shù)字或作記號)
4、圓可以轉(zhuǎn)化成我們學(xué)過的圖形嗎?
。1)圓可以轉(zhuǎn)化成()形,請畫圖說明。轉(zhuǎn)化后的圖形與圓有什么關(guān)系?你能嘗試推導(dǎo)圓的面積計算公式嗎?
。2)除了書本的推導(dǎo)辦法,還有其它的辦法推導(dǎo)出圓的面積嗎?可以和家長一起探索,也可以上網(wǎng)搜索查詢。
圓的面積教案9
第一課時
教學(xué)內(nèi)容
圓的面積
教材第67、第68頁的內(nèi)容。
教學(xué)要求
1.使學(xué)生理解圓的面積公式的推導(dǎo)過程,掌握求圓的面積的方法并能正確計算。
2.培養(yǎng)學(xué)生運用轉(zhuǎn)化的思想解決問題的能力。
重點難點
重點:掌握圓的面積的計算公式,能夠正確地計算圓的面積。
難點:理解圓的面積公式的推導(dǎo)過程。
教具學(xué)具
實物投影,各種圖形的紙片。
教學(xué)過程
一導(dǎo)入
1.我們學(xué)過哪些平面圖形的面積公式?
2.長方形、平行四邊形和三角形的面積公式分別是什么?
3.平行四邊形的面積公式是如何推導(dǎo)的?小結(jié):平行四邊形面積公式的推導(dǎo),提供給我們一種研究平面圖形的面積的方法,即把所學(xué)的圖形進行分割、拼擺,轉(zhuǎn)化成學(xué)過的圖形,用舊知識解決新問題。今天,我們還要用轉(zhuǎn)化的思想研究圓的面積。
二教學(xué)實施
1.明確圓的面積的概念。
(1)老師出示一個圓,提問:誰能聯(lián)系我們學(xué)過的圖形的面積說一說圓的面積是什么?
學(xué)生回答,老師歸納:圓所圍成的平面的大小叫做圓的面積。
(2)圓的大小是由什么決定的?
(3)展示由“曲”變“直”的漸變圖。
引導(dǎo)學(xué)生逐層觀察圓周曲線的變化情況,把圓等分的份數(shù)越多,圓周曲線就越來越直,當(dāng)我們繼續(xù)分下去……圓周曲線就變成一條近似的直線段了,用這樣的.小塊拼擺的圖形就更近似于我們學(xué)過的圖形。
2.學(xué)生動手操作,推導(dǎo)圓的面積公式。
為了研究方便,我們把圓等分成16份,圓周部分近似看作線段,其中的一份是個近似的三角形,
(1)指導(dǎo)學(xué)生動手?jǐn)[學(xué)具,并思考幾個問題:
你擺的是什么圖形?
你擺的圖形的面積與圓的面積有什么關(guān)系?
所擺圖形的各部分相當(dāng)于圓的什么?
你如何推導(dǎo)出圓的面積?
(2)學(xué)生動手?jǐn)[學(xué)具,然后發(fā)言。
拼成長方形:
老師說明:如果分的份數(shù)越多,每一份就會越小,拼成的圖形就會越接近長方形。
出示教材第67頁上面的圖加以說明。
拼成的近似長方形的長和寬與圓的各部分有什么關(guān)系?
從圖中可以看出圓的半徑是r,長方形的長是πr,寬是r。
長方形的面積=長×寬
↓ ↓↓
圓的面積=πr×r=πr2
如果用S表示圓的面積,那么圓的面積計算公式就是S=πr2。
3.利用公式計算圓的面積。
出示例1:圓形草坪的直徑是20m,每平方米草皮8元。鋪滿草坪需要多少錢?
指名讀題,讓學(xué)生試做,提醒學(xué)生不用寫公式,直接列算式就可以。
板書:20÷2=10(m)
3.14×102
=3.14×100
=314(m2)
314×8=2512(元)
答:鋪滿草坪需要2512元。
老師強調(diào)指出:列出算式后,要先算平方,再與π相乘。
三課堂作業(yè)新設(shè)計
1.直接寫出得數(shù)。
22= 32= 42= 52= 62= 72=
82= 92= 102= 0.22=0.72= 0.92=
2.求下面各圓的面積。
3.一塊圓形鐵板的半徑是3分米。它的面積是多少平方分米?
4.一個圓桌桌面的直徑是1.2米。它的面積是多少平方米?
四思維訓(xùn)練
計算陰影部分的面積。(單位:分米)參考答案
課堂作業(yè)新設(shè)計
1.491625364964811000.040.490.81
2.12.56平方分米28.26平方分米1256平方厘米28.26平方米
3.28.26平方分米
4.1.1304平方米
思維訓(xùn)練
3.44平方分米
板書設(shè)計
圓的面積
長方形的面積=長×寬
↓ ↓↓
圓的面積=πr×r=πr2
20÷2=10(m)
3.14×102
=3.14×100
=314(m2)
314×8=2512(元)
答:鋪滿草坪需要2512元。
備課參考教材與學(xué)情分析
本部分內(nèi)容是在初步認(rèn)識了圓,學(xué)習(xí)了圓的周長,以及學(xué)過幾種常見直線幾何圖形的面積的基礎(chǔ)上進行教學(xué)的。學(xué)生從學(xué)習(xí)直線圖形的面積,到學(xué)習(xí)曲線圖形的面積,不論是內(nèi)容本身還是研究方法,都是一次質(zhì)的飛躍。學(xué)生掌握了圓面積的計算,不僅能解決簡單的實際問題,也為以后學(xué)習(xí)圓柱、圓錐的知識打下基礎(chǔ)。學(xué)生已經(jīng)有了平面幾何圖形的經(jīng)驗,知道運用轉(zhuǎn)化的思想研究新的圖形的面積,在學(xué)習(xí)中要鼓勵學(xué)生大膽想象、勇于實踐。在操作中將圓轉(zhuǎn)化成已學(xué)過的平面圖形,從中找到圓的面積與半徑、直徑的關(guān)系。
課堂設(shè)計說明
1.通過實際情境,一方面使學(xué)生了解圓的面積的含義,另一方面使學(xué)生體會到在實際生活中計算圓面積的必要性。
2.教學(xué)時,強調(diào)知識遷移的過程。
平行四邊形、三角形和梯形的面積公式推導(dǎo)過程是學(xué)生知識遷移的基礎(chǔ),這一環(huán)節(jié)的設(shè)計既能勾起學(xué)生對已有知識的回憶,又能啟發(fā)學(xué)生運用轉(zhuǎn)化的思想解決數(shù)學(xué)問題。
3.組織學(xué)生觀察猜想。
先觀察再猜想的方法既培養(yǎng)了學(xué)生的空間想象力,又發(fā)展了學(xué)生的邏輯推理能力。
圓的面積教案10
圓是小學(xué)階段最后學(xué)的一個平面圖形,學(xué)生從學(xué)習(xí)直線圖形的認(rèn)識,到學(xué)習(xí)曲線圖形的認(rèn)識,不論是學(xué)習(xí)內(nèi)容的本身,還是研究問題的方法,都有所變化,是學(xué)習(xí)上的一次飛躍。通過對圓的研究,使學(xué)生認(rèn)識到研究曲線圖形的基本方法,同時滲透了曲線圖形與直線圖形的關(guān)系。這樣不僅擴展了學(xué)生的知識面,而且從空間觀念來說,進入了一個新的領(lǐng)域。
教學(xué)內(nèi)容
教科書第94頁圓面積公式的推導(dǎo),第95頁的例3,練習(xí)二十四的第1~5題.
教學(xué)目的
使學(xué)生知道圓的面積的含義,理解和掌握圓的面積的計算公式,能夠正確地計算圓的面積.
教具、學(xué)具準(zhǔn)備
教師仿照教科書第94頁上的圖用木板制作教具,準(zhǔn)備長方形、平行四邊形、梯形和圓形紙片各一個;學(xué)生把教科書第187頁上面的圖剪下來貼在紙板上,作為操作用的學(xué)具.
教學(xué)過程
一、復(fù)習(xí)
1.教師:什么叫做面積?長方形的面積計算公式是什么?
2.教師:請同學(xué)們回憶一下平行四邊形、三角形和梯形的面積計算公式的推導(dǎo)過程.想一想這些推導(dǎo)過程有什么共同點?
二、新課
1.教學(xué)圓面積的含義及計算公式.
教師依次拿出長方形、平行四邊形、三角形和梯形圖,邊演示(然后貼在黑板上)邊說:“我們已經(jīng)學(xué)過這些圖形的面積,請同學(xué)們說一說這些圖形的面積有什么共同的地方?”使學(xué)生明確:這些圖形的面積都是由邊所圍成的平面的大。
教師再出示圓,提問:這是一個圓,誰能聯(lián)系前面這些圖形的面積說一說圓的面積是什么?讓大家討論.最后教師歸納出:圓所圍平面的大小叫做圓的面積.
教師:我們已經(jīng)知道了什么是圓的面積,請同學(xué)們聯(lián)系前面一些圖形的.面積公式的推導(dǎo)過程想一想,怎樣能計算圓的面積呢?使學(xué)生初步領(lǐng)會到可以把圓轉(zhuǎn)化成一個已學(xué)過的圖形來推導(dǎo)圓面積的計算公式.
教師出示把圓平均分成16份的教具,讓學(xué)生想一想,能不能把這個圓拼成一個近似什么形狀的圖形.如果學(xué)生回答有困難,可提示學(xué)生看教科書第10頁上面的圖,并讓學(xué)生拿出學(xué)具,試著拼一拼,然后讓拼得正確的同學(xué)到前面演示一下拼的過程,再讓不會拼的同學(xué)拼一遍.
然后教師直接拿出把圓平均分成32份的教具拼成一個近似長方形,提問:“我們剛才把這個圓拼成了近似什么形狀的圖形?”(長方形.)請同學(xué)們觀察一下,把這個圓平均分的份數(shù)越多,這個圖形越怎么樣?(引導(dǎo)學(xué)生看出平均分的份數(shù)越多,這個圖形越近似于長方形.)拼成的近似長方形與原來的圓相比,什么變了?什么沒變?(使學(xué)生看出形狀變了,但面積沒有變,圓的面積等于近似長方形的面積.)
教師在拼成的近似長方形的右邊畫一個長方形,指出:如果平均分的份數(shù)越多,拼成的近似長方形就越接近長方形.提問:“請同學(xué)們觀察一下,這個長方形的長與寬和原來的圓的周長與半徑之間有什么關(guān)系?”使學(xué)生在教師的引導(dǎo)下看出:這個近似長方形的長相當(dāng)于圓的周長的一半,如果圓的半徑是r,即==πr;長方形的寬就是圓的半徑.接著提問:這個長方形的面積是多少?這個圓的面積呢?
學(xué)生說,教師板書:圓的面積=πr×r=πr2
教師:如果用S表示圓的面積,那么圓的面積計算公式就是:S=πr2.
教師:我們現(xiàn)在已經(jīng)知道了圓面積的計算公式,我們現(xiàn)在只要知道圓的什么就可以求出圓的面積?然后再讓學(xué)生說一說圓面積計算公式的推導(dǎo)過程.
2.教學(xué)例3.
教師出示例3,指名讀題,讓學(xué)生試著做,提醒學(xué)生不用寫公式,直接列算式就可以.
然后讓學(xué)生對照書上的解題過程,看自己做得對不對;如果錯了,錯在什么地方.教師要強調(diào)指出:列出算式后,要先算平方,再與π相乘.最后小結(jié)一下解題過程.
三、課堂練習(xí)
做練習(xí)二十四的第1~5題.
1.第1題,讓學(xué)生直接列式計算,指名板演,教師巡視,檢查學(xué)生有沒有把圓的面積公式寫成圓的周長公式來計算,書寫格式對不對,寫沒寫單位名稱.訂正時了解學(xué)生還存在什么問題,及時糾正.
2.第2題,讓學(xué)生獨立做,教師巡視,除了注意學(xué)生在做第1題時易犯的錯誤外,還要檢查學(xué)生有沒有把第(2)小題的直徑當(dāng)半徑直接計算的,訂正時提醒學(xué)生做題時要認(rèn)真審題.
3.第3題,讓學(xué)生自己做,集體訂正.
4.第4題,指名讀題,讓學(xué)生說一說這道題與第3題有什么不同的地方,能不能直接計算.使學(xué)生明確要先算出半徑,再計算.
5.第5題,讓學(xué)生讀題,看著右面的示意圖說一說題意,再讓學(xué)生做,集體訂正.
圓的面積教案11
教學(xué)目標(biāo)
1、經(jīng)歷圓面積計算公式的推導(dǎo)過程,掌握圓的面積計算公式。
2、能正確運用圓面積的計算公式計算圓的面積。
3、在探究圓面積的計算公式過程中,體會轉(zhuǎn)化的數(shù)學(xué)思想方法;初步感受極限的思想。
教學(xué)重難點及學(xué)具準(zhǔn)備
教學(xué)重點和難點:圓面積的計算公式推導(dǎo)。
教學(xué)準(zhǔn)備:圓形紙片、剪刀、多媒體課件等。
教學(xué)過程
課前談話:
聊一聊《曹沖稱象》的故事。
(設(shè)計意圖:放松學(xué)生的緊張心情,為課堂教學(xué)做好了心理準(zhǔn)備;另一方面,用《曹沖稱象》的故事,喚起學(xué)生已有的經(jīng)驗。設(shè)計“怎么不直接稱大象的重量?”這一關(guān)鍵問題,抓住學(xué)生回答中的“用石頭代替大象”“石頭的重量和大象的重量相等”等要點,把學(xué)生經(jīng)驗中的“轉(zhuǎn)化”思想激活,為新課的教學(xué)做好思想方法上的準(zhǔn)備。)
教學(xué)過程:
一、開門見山,揭示課題
(出示一個圓)大家看,這是什么圖形?
我們已經(jīng)認(rèn)識了圓,學(xué)習(xí)了圓的周長,這節(jié)課我們一起來學(xué)習(xí)圓的面積。(板書課題:圓的面積)
(設(shè)計題圖:采用開門見山的的`引入方式,這樣設(shè)計簡潔明快,結(jié)構(gòu)緊湊,能保證把過程性目標(biāo)落實到位。)
二、第一次探究,明確思路,體會“轉(zhuǎn)化”的數(shù)學(xué)思想方法
請你想一想,什么是圓的面積呢?
圓所占平面的大小就是圓的面積。那怎么求圓的面積呢?
圓能不能轉(zhuǎn)化成我們學(xué)過的圖形呢?我們可以試一試。請大家利用手中的圓紙片和準(zhǔn)備的工具在小組內(nèi)研究研究。
(設(shè)計意圖:在學(xué)生迷茫時指明了思考的方向和方法,又讓學(xué)生把“圓”這個看似特殊的圖形(用曲線圍成的圖形)與以前學(xué)過的圖形(用直線段圍成的圖形)有機地聯(lián)系起來,溝通知識之間的聯(lián)系,促成遷移。)
怎樣讓扇形和三角形的面積接近一些?
現(xiàn)在,有兩種思路,一種是把圓折一折想轉(zhuǎn)化成三角形,還有一種是想通過剪拼把圓轉(zhuǎn)化成平行四邊形,你們發(fā)現(xiàn)這兩種方法的共同點了嗎?
把圓這個新圖形轉(zhuǎn)化成已經(jīng)學(xué)過的圖形求出面積。
(設(shè)計意圖:“你們發(fā)現(xiàn)這兩種方法的共同點了嗎?”這一關(guān)鍵問題,旨在引導(dǎo)學(xué)生通過回顧反思,達到滲透“轉(zhuǎn)化”這一數(shù)學(xué)思想方法的目的。)
三、第二次探究,明確方法,體驗“極限思想”
我發(fā)現(xiàn)一個問題,不管是折成的三角形,還是剪拼成的平行四邊形都不是很像,怎么才能更像呢,這就是下面要研究的問題。請每個小組在兩種思路中選擇一種繼續(xù)研究。
為什么要折這么多份?
把圓分的份數(shù)越多,其中的一份越接近三角形。三角形的底可以看成這段弧,三角形的高可以看成是圓的半徑。你們會求三角形的面積嗎?三角形的面積會求了,能求出圓的面積嗎?
把圓剪成更多份,能讓拼成的圖形更接近平行四邊形。
(設(shè)計意圖:讓學(xué)生真切地看到“自己想象的過程”,充分地體驗“極限思想”。)
四、第三次探究,深化思維,推導(dǎo)公式
剛才同學(xué)們借助學(xué)具通過動手操作,都找到解決問題的方法了。一種是把圓轉(zhuǎn)化成長方形求出面積;一種是把圓轉(zhuǎn)化成三角形,得到圓的面積?墒菙(shù)學(xué)學(xué)習(xí)不僅需要動手操作,更需要借助數(shù)字、字母和符號等進行動腦思考和推理,F(xiàn)在,老師想給大家提個更高的要求:每個小組能不能還利用剛才選擇的方法,推導(dǎo)出圓的面積計算公式呢?
(設(shè)計意圖:在第二次探究中,學(xué)生主要是借助學(xué)具進行動手操作,明晰求圓的面積的方法。操作對于小學(xué)生學(xué)習(xí)數(shù)學(xué)是必不可少的手段和方法,但數(shù)學(xué)思維的特點是要進行邏輯思考和推理。
第三次探究結(jié)果的交流,教師有意識地先讓學(xué)生交流將圓轉(zhuǎn)化成長方形求出圓的面積公式的方法,因為這種方法學(xué)生理解起來比較容易,是要求每個學(xué)生都要掌握的方法。)
五、解決問題
1、現(xiàn)在你能求出黑板上這個圓形紙片的面積了吧?需要什么條件?這個圓的半徑是10厘米,面積是多少呢?請大家做在練習(xí)本上。(請一名學(xué)生到黑板上板演。)
(教師組織交流。)
2、知道圓的半徑可以求出圓的面積,那么,知道直徑和周長能不能求出圓的面積呢?教師出示直徑為6分米的圓和周長為12.56厘米的圓,學(xué)生思考后說出求面積的方法,即要求圓的面積必須先根據(jù)直徑或周長求出圓的半徑。
(設(shè)計意圖:因為本節(jié)課的主要目標(biāo)是引導(dǎo)學(xué)生去經(jīng)歷探究圓的面積公式的過程,充分體驗“轉(zhuǎn)化”和“極限思想”,而有關(guān)求圓的面積的變式練習(xí),以及利用圓的面積公式解決實際問題的練習(xí)都安排在下一節(jié)課中。因此,這節(jié)課只設(shè)計了幾個基本練習(xí),目的是檢驗學(xué)生對圓的面積的理解和掌握程度。)
六、小結(jié)
圓的面積教案12
教學(xué)內(nèi)容:
圓的面積(2)
教學(xué)目的:
5、使學(xué)生能夠正確并靈活的運用公式進行計算。
6、培養(yǎng)學(xué)生觀察、比較、分析、綜合能力并培養(yǎng)學(xué)生合作意識。
7、領(lǐng)會事物之間是聯(lián)系和發(fā)展的辯證唯物主義觀念以及透過現(xiàn)象看本質(zhì)的辯證思維方法。
教學(xué)重點:
1、學(xué)生能夠正確并靈活的運用公式進行計算。
2、培養(yǎng)學(xué)生觀察、比較、分析、綜合能力并培養(yǎng)學(xué)生合作意識。
教學(xué)難點:
使學(xué)生能夠正確并靈活的運用公式進行計算。
教學(xué)過程:
1、說一說你的計算方法:
r=3,c=_______
s=_______
2、上節(jié)課我們研究了圓的面積,如果求圓的面積需要知道什么條件?怎么求?(需要知道r可以直接用公式計算。)
板書:
3、導(dǎo)入:如果知道直徑或周長,你能求出圓的面積嗎?還有哪些圖形的面積需要運用圓的面積的知識來解決的呢?今天我們繼續(xù)研究有關(guān)圓的'面積的知識。
板書:圓的面積
。ㄒ唬┭芯繄A的面積的計算方法:
1、出示例4:街心花園中的圓形花壇周長是18.84米,花壇的面積是多少平方米?
。1)學(xué)生讀題。
。2)學(xué)生試做。
。3)全班匯報。
18.84÷3.14÷2=3(米)
3.14×32=28.26(平方米)
答:花壇的面積是28.26平方米?
。4)師問:3米表示什么?
28.26表示什么?
為什么兩個單位名稱不同?
小結(jié):看來,我們要想求圓的面積需要先求出圓的半徑。
2、反饋:
清華附小有一個圓形花圃,它的直徑是8米,它的面積是多少平方米?
。1)生試做。
(2)小組交流。
。3)全班交流。
小結(jié):通過剛才兩道題的練習(xí),我們對圓的面積的計算又有了新的認(rèn)識,知道周長或直徑也能求出圓的面積,看來事物間是相互聯(lián)系的。
(二)研究環(huán)形面積的計算方法:
1、出示例5:右圖中涂色部分是個環(huán)形,它的內(nèi)圓半徑是10厘米,外圓半徑是15厘米,它的面積是多少平方厘米?
。1)學(xué)生讀題。
。2)觀察:
a:哪里是內(nèi)圓和內(nèi)圓半徑?你能指一指嗎?
b:哪里是外圓和外圓半徑?你能指一指嗎?
外圓是由哪幾部分組成的?
C:哪里是環(huán)形面積?
D:請你觀察環(huán)形有什么特點?生活中在哪里見到過環(huán)形?
(同一個圓心;由內(nèi)圓和外圓之分;環(huán)形是一個中間鏤空的圓環(huán))
。3)你打算怎樣求出環(huán)形面積?(學(xué)生討論)
(4)學(xué)生試做。
(5)全班匯報:
a:外圓面積:3.14×152=706.5(平方米)
b:內(nèi)圓面積:3.14×102=314(平方米)
c:環(huán)形面積:706.5-314=392.5(平方米)
答:它的面積是392.5平方厘米?
(6)你是怎樣求的環(huán)形面積?你能列出綜合算式解答嗎?
板書:3.14×152-3.14×102=392.5(平方米)
。7)小結(jié)并質(zhì)疑:
根據(jù)環(huán)形的特點,我們可以用外圓面積減內(nèi)圓面積的方法求出環(huán)形的面積。你還有其他方法求出環(huán)形的面積嗎?小組討論。
(8)全班匯報:
根據(jù)綜合算式3.14×152-3.14×102=392.5(平方米),我利用乘法分配率推出了3.14×(152-102)=392.5(平方米)也就是用(R2-r2)π=S環(huán)
板書:S環(huán)=(R2-r2)π
。9)小結(jié):你們自己發(fā)現(xiàn)了兩種方法計算環(huán)形的面積,你們可真夠棒的。
。10)判斷:用算式(15-10)2×3.14計算環(huán)形面積可以嗎
圓的面積教案13
教學(xué)內(nèi)容:
圓的面積。
教學(xué)目標(biāo):
1. 通過操作,引導(dǎo)學(xué)生推導(dǎo)出圓面積的計算公式,并能運用公式解答一些簡單的實際問題。
2. 激發(fā)學(xué)生參與整個課堂教學(xué)活動的學(xué)習(xí)興趣, 培養(yǎng)學(xué)生的分析、觀察和概括能力,發(fā)展學(xué)生的空間觀念。
3. 滲透轉(zhuǎn)化的數(shù)學(xué)思想和極限思想。
教學(xué)重點:
正確計算圓的面積。
教學(xué)難點:
圓面積公式的推導(dǎo)。
學(xué)情分析:
本課是在學(xué)生掌握了面積的含義及長方形、正方形等平面圖形面積的計算方法,認(rèn)識了圓,會計算圓的周長的基礎(chǔ)上進行教學(xué)的,教學(xué)時要注意遵循學(xué)生的認(rèn)識規(guī)律,重視學(xué)生獲取知識的思維過程,重視從學(xué)生的生活經(jīng)驗和已有的知識出發(fā)。
學(xué)法指導(dǎo):
教學(xué)本課時,重點引導(dǎo)學(xué)生提出將圓割拼成已學(xué)過的圖形,組織學(xué)生動手操作,讓學(xué)生主動參與知識形成的過程,從而培養(yǎng)學(xué)生的創(chuàng)新意識、實踐能力,并發(fā)展學(xué)生的空間觀念。
教具準(zhǔn)備:
多媒體課件,圓片。
學(xué)具準(zhǔn)備:
把圓片分成十六等分,并按課本圖所示,剪拼并貼成近似長方形。
教學(xué)設(shè)計:
一、復(fù)習(xí)舊知,導(dǎo)入新課
1. 前面我們學(xué)習(xí)了圓、圓的周長。如果圓的半徑用r表示,周長怎樣表示?(2πr)周長的一半怎樣表示?(πr)
2. 課件:出示一塊圓形的桌布。如果要給這塊桌布的邊縫上花邊,是求什么?(圓形桌布的周長)
3.件:出示一塊圓形的鏡框。如果要鏡框配一塊玻璃,至少需要多大?是求什么?(圓的面積)誰能指出這個圓的面積?誰能概括一下什么是圓的面積?請同學(xué)們用手摸出學(xué)具圓的面積。
提問:如果圓的半徑是2分米,你能猜猜這塊玻璃到底有多大?(同學(xué)們紛紛地猜測,有的學(xué)生可能說這個圓面小于所在的正方形面積)
這塊圓形玻璃有多大,就是要求圓形的面積,這節(jié)課我們一起來研究怎樣計算圓的面積。(板書課題:圓的面積)
二、動手操作,探索新知
1. 回憶平行四邊形、三角形、梯形面積計算公式推導(dǎo)過程。
。1)以前我們學(xué)習(xí)了平行四邊形、三角形和梯形的面積計算公式。請同學(xué)們回想一下,這些圖形的面積計算公式是怎樣推導(dǎo)出來的?(學(xué)生回答,師用課件演示。)
。2)通過回憶這三種平面圖形面積計算公式的推導(dǎo),你發(fā)現(xiàn)了什么?(發(fā)現(xiàn)這三種平面圖形都是轉(zhuǎn)化為學(xué)過的圖形來推導(dǎo)出它們的面積計算公式。)
。3)能不能把圓轉(zhuǎn)化為學(xué)過的圖形來推導(dǎo)出它的面積計算公式呢?那么同學(xué)們想一想,圓可能轉(zhuǎn)化為什么平面圖形來計算呢?
2. 推導(dǎo)圓面積的計算公式。
(1)拿出已準(zhǔn)備好的學(xué)具,說說你把圓剪拼成了什么圖形?
。2)學(xué)生小組討論。
看拼成的長方形與圓有什么聯(lián)系?
學(xué)生匯報討論結(jié)果。
。3)課件演示:請看大屏幕,把圓分成16等份,拼成了近似平行四邊形,再分成32等份,拼成近似的平行四邊形,再分成64等份,拼成近似長方形,你發(fā)現(xiàn)什么?(如果分的份數(shù)越多,每一份就會越細(xì),拼成的圖形就會越接近于長方形。)
。4)你能根據(jù)長方形的`面積計算公式推導(dǎo)出圓的面積計算公式嗎?小組討論一下。
生邊答師邊演示課件。
生答:因為拼成的長方形的面積與圓的面積相等,長方形的長相當(dāng)于圓周長的一半,寬相當(dāng)于半徑。
因為長方形的面積=長×寬
所以圓的面積=周長的一半×半徑
S=πr × r S=πr2 師小結(jié)公式
S=πr2,讓學(xué)生小組內(nèi)說說圓的面積是怎樣推導(dǎo)出來的?
。5)讀公式并理解記憶。
。6)要求圓的面積必須知道什么?(半徑)
3. 利用公式計算。
(1)用新的方法算一算:剛才的玻璃到底有多大?看誰剛才猜得較接近。(學(xué)生計算并匯報)
(2)出示例3,學(xué)生嘗試練習(xí),反饋評價。
提問:如果這道題告訴的不是圓的半徑,而是直徑,該怎樣解答?不計算,誰知道結(jié)果是多少嗎?
。3)完成第95頁做一做的第1題。
。4)看書質(zhì)疑。
三、運用新知,解決問題
1. 求下面各圓的面積,只列式不計算。(CAI課件出示)
2. 測量一個圓形實物的直徑,計算它的周長及面積。
3. 課件演示
用一根繩子把羊栓在木樁上,演示羊邊吃草邊走的情景。(生看完提問題并計算)(羊吃到草的最大面積即最大圓面積是多少?)
四、全課小結(jié)
這節(jié)課你自己運用了什么方法,學(xué)到了哪些知識?
五、布置作業(yè)
1. 第97頁的第3題和第4題。
2. 找出身邊的圓,同桌合作量一量半徑,算一算面積(完成實驗報告單)
測量物、直徑(厘米)、半徑(厘米)、面積(平方厘米)
板書設(shè)計:
圓的面積
長方形的面積= 長× 寬
圓的面積=周長的一半×半徑
S=πr×r
S=πr2
圓的面積教案14
教學(xué)目標(biāo):
1、在初步認(rèn)識圓柱的基礎(chǔ)上理解圓柱的側(cè)面積和表面積的含義,掌握圓柱側(cè)面積和表面積的計算方法,會正確計算圓柱的側(cè)面積和表面積。
2、通過實踐操作,在學(xué)生理解圓柱側(cè)面積和表面的含義的同時,能解決一些有關(guān)實際生活的問題。
教學(xué)重點,難點:
掌握圓柱側(cè)面積和表面積的計算方法。
運用所學(xué)的知識解決簡單的實際問題。
教學(xué)過程:
一、引入新課:
前一節(jié)課我們已經(jīng)認(rèn)識了一個新朋友——圓柱,誰能說說這位新朋友長什么樣子以及有什么特征嗎?
1.圓柱是由平面和曲面圍成的立體圖形。
2.圓柱各部分的名稱(兩個底面,側(cè)面,高)。
3.把圓柱的側(cè)面沿著它的一條高剪開得到一個長方形,這個長方形的長等于圓柱的底面周長、寬等于圓柱的高。
同學(xué)們對圓柱已經(jīng)知道得這么多了,還想對它作進一步的了解嗎?今天我們就一起來研究怎樣求圓柱的表面積。
二、探究新知:
以前我們學(xué)過正方體、長方體的表面積,觀察一個長方體,我們是怎么求這個長方體的表面積的呢?(六個面的面積和就是它的表面積)
同學(xué)們想一想我們要求圓柱的表面積,那么圓柱的表面積指的是什么?
教師引導(dǎo),學(xué)生討論結(jié)果:圓柱的側(cè)面積加上兩個底面的面積就是圓柱的表面積。
板書:(圓柱的表面積=圓柱的側(cè)面積+兩個底面的面積)
1.圓柱的側(cè)面積
(1)圓柱的側(cè)面積,顧名思義,也就是圓柱側(cè)面的面積。
(2)出示圓柱的展開圖:這個展開后的長方形的面積和圓柱的側(cè)面積有什么關(guān)系呢?
(學(xué)生觀察很容易看到這個長方形的面積等于圓柱的側(cè)面積)
(3)那么,圓柱的側(cè)面積應(yīng)該怎樣計算呢?(引導(dǎo)學(xué)生根據(jù)展開后的長方形的長和寬與圓柱底面周長和高的'關(guān)系,可以知道:圓柱的側(cè)面積=底面周長×高)
2.側(cè)面積練習(xí):練習(xí)二第5題
學(xué)生審題,回答下面的問題:
這兩道題分別已知什么,求什么?
小結(jié):要計算圓柱的側(cè)面積,必須知道圓柱底面周長和高這兩個條件,有時題里只給出直徑或半徑,底面周長這個條件可以通過計算得到,在解題前要注意看清題意再列式。
3.理解圓柱表面積的含義.
(1)讓學(xué)生把自己制作的圓柱模型展開,觀察一下,圓柱的表面由哪幾個部分組成?(通過操作,使學(xué)生認(rèn)識到:圓柱的表面由上下兩個底面和側(cè)面組成。)
(2)圓柱的表面積是指圓柱表面的面積,也就是圓柱的側(cè)面積加上兩個底面的面積。
公式:圓柱的表面積=圓柱的側(cè)面積+底面積×2
4.嘗試練習(xí)。
(1)求下面各圓柱的側(cè)面積。
、俚酌嬷荛L2.5分米,高0.6分米。
、诘酌嬷睆8厘米,高12厘米。
(2)求下面各圓柱的表面積。
、俚酌娣e是40平方厘米,側(cè)面積是25平方厘米。
②底面半徑是2分米,高是5分米。
5.小結(jié):
在計算圓柱形的表面積時,要根據(jù)給定的數(shù)據(jù)計算各部分的面積。(如:有時候給出的是底面半徑,有時是底面直徑。)
三、鞏固練習(xí)。
1.做第14頁“做一做”。(求表面積包括哪些部分?)
2.練習(xí)二第6,7題。
四、課后思考。
同學(xué)們想一想是不是所有的圓柱在計算表面積時都可以用
公式:圓柱的表面積=圓柱的側(cè)面積+底面積×2來計算呢?
圓的面積教案15
一、教學(xué)目標(biāo):
1、首先帶動課堂氣氛
2、教會學(xué)生什么是面積。
3、學(xué)習(xí)圓柱體側(cè)面積和表面積的含義。
4、能夠求圓柱的側(cè)面積和表面積的方法。
二、教學(xué)重點:
動手操作展開圓柱的側(cè)面積
三、教學(xué)難點:
圓柱側(cè)面展開圖的多樣性,并能夠?qū)⒄归_圖與圓柱體的各部分建立聯(lián)系,并推導(dǎo)出圓柱側(cè)面積、表面積的計算公式。
四、教具準(zhǔn)備:
圓柱表面展開圖、紙質(zhì)圓柱形茶葉罐、長方形紙、剪刀、圓柱體紙盒。
五、教學(xué)過程:
(一)、創(chuàng)設(shè)情境,引起興趣。
出示:牛奶盒,紙箱,可比克。
提問(1)這些東西我們很熟悉吧!誰來說說它們是什么形狀的呢?(指名說)
(2)制作這些包裝盒,至少需要多大面積的材料?(指名說)
師:誰能說說上一節(jié)課你學(xué)過圓柱體的哪些知識?
生:........
師:請同學(xué)們拿出你自制的圓柱體模型,動手摸一摸
生:動手摸圓柱體
師:誰能說一說你摸到的是哪些部分?
生:.......
師:你所摸到的圓柱體的表面,它的大小叫做表面積,我們這節(jié)課就要學(xué)習(xí)如何求圓柱體的表面積的大小。板書課題:圓柱的表面積
(二)、探索交流,解決問題。
圓柱的側(cè)面積是一個曲面,那么怎樣才能把它變成我們熟悉的平面呢?(找學(xué)生回答問題)提問:請大家猜一猜,如果我們將圓柱體的側(cè)面(也就是這個包裝紙)展開,會是什么形狀的呢?
研究圓柱側(cè)面積用自己喜歡的方式,將茶葉罐的包裝紙展開,看看得到一個什么圖形?先猜想,然后說說,再操作驗證。這個圖形各部分與圓柱體茶葉罐有什么關(guān)系?小組交流。(學(xué)生要說清楚展開的方法不同能得到什么不同的圖形)(展開的形狀可能是長方形、平行四邊形、正方形等)
1、獨立操作利用手中的材料(紙質(zhì)小圓柱,長方形紙,剪刀),用自己喜歡的。方式驗證剛才的猜想。
2.操作活動:
(1)用自己喜歡的方式,將茶葉罐的包裝紙展開,看看得到一個什么圖形?
(2)觀察這個圖形各部分與圓柱體茶葉罐有什么關(guān)系?獨立操作后,與小組里的同學(xué)交流
3.小組交流能用已有的知識計算它的面積嗎?
4、小組匯報。(選出一個學(xué)生已經(jīng)展開的圖形貼到黑板上)
重點感受:圓柱體側(cè)面如果沿著高展開是一個長方形。(這里要強調(diào)沿著高剪)
這個長方形與圓柱體上的那個面有什么關(guān)系?(長方形的長是圓柱體底面周長、長方形的寬是圓柱體的高)
板書:
長方形的面積=長×寬
↓↓↓
圓柱的側(cè)面積=底面周長×高
所以,圓柱的側(cè)面積=底面周長×高
S側(cè)=C×h
如果已知底面半徑為r,圓柱的側(cè)面積公式也可以寫成:S側(cè)=2∏r×h
師:如果圓柱展開是平行四邊形,是否也適用呢?
學(xué)生動手操作,動筆驗證,得出了同樣適用的結(jié)論。
(因為剛才學(xué)生是用自己喜歡的方式剪開的,所以可能已經(jīng)出現(xiàn)了這種情況。此時可以讓已經(jīng)得出平行四邊形的學(xué)生介紹一下他的剪法,然后大家拿出準(zhǔn)備好的'圓柱紙盒用此法展開)
(四)、練習(xí)
求圓柱的側(cè)面積(只列式不計算)
1。底面周長是1.6米,高是0.7米
2。底面直徑是2分米,高是45分米
3。底面半徑是3.2厘米,高是5分米
(五)研究圓柱表面積
1、現(xiàn)在請大家試著求出這個圓柱體茶葉罐用料多少。需要計算哪幾個面的面積?需要什么條件?(指名說)
2、動畫:圓柱體表面展開過程
3、圓柱體的表面積怎樣求呢?得出結(jié)論:圓柱的表面積=圓柱的側(cè)面積+底面積×24.一個圓柱形茶葉筒的高是10厘米,底面半徑是3厘米,它的表面積是多少平方厘米(學(xué)生獨立完成后交流反饋)
(六),鞏固應(yīng)用,內(nèi)化提高
1、比較有蓋,無蓋,一個蓋的圓柱物體的表面積計算的異同?多媒體出示:水管,水桶,糖盒提問:這些圓柱形物體在計算表面積時有什么不同?(指名說)
2、做一個沒有蓋的圓柱形水桶,底面半徑是10厘米,高是40厘米,至少需要多少平方厘米?(得數(shù)保留整百平方厘米)重點感受:沒有蓋,至少這兩個詞語。在實際中,使用的材料都要比計算得到的結(jié)果多一些。因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位進1.這種取近似值的方法叫做進一法。
3.一個圓柱形水池,直徑是20米,深2米,在池內(nèi)的側(cè)面和池底抹一層水泥,水泥面的面積是多少平方米?
六、教學(xué)結(jié)束:
布置學(xué)生用本節(jié)課所學(xué)知識制作出一個筆筒,下節(jié)課帶來送給自己的朋友。
【圓的面積教案】相關(guān)文章:
《圓的面積》教案03-06
圓的面積教案01-19
《圓的面積》教案(通用)12-21
圓的面積教案范文05-04
小學(xué)數(shù)學(xué)圓的面積的教案11-24
圓的面積教案精選15篇03-31
圓的面積教案(精選15篇)02-24
圓的面積教案15篇02-11